
MesonGS: Post-training Compression of 3D
Gaussians via Efficient Attribute Transformation

Supplementary Material

Shuzhao Xie1 , Weixiang Zhang1, Chen Tang1,3, Yunpeng Bai4, Rongwei Lu1,
Shijia Ge1, and Zhi Wang1,2,†

1 SIGS & TBSI, Tsinghua University, 2 Peng Cheng Laboratory
3 MMLab, The Chinese University of Hong Kong, 4 The University of Texas at Austin

https://shuzhaoxie.github.io/mesongs/

1 Comparisons with covariance-based replacement

In this section, we introduce the experiment settings of our comparison with
the covariance-based replacement strategy. We first introduce the replacement
strategy proposed in C3DGS [9]. Then, we present how to adapt this idea into
our framework. Finally, we analyze the disadvantages of the covariance-based
replacement.

1.1 How does C3DGS utilize covariance?

C3DGS [9] compresses the 3D coordinates, opacity, the Gaussian shape, and
the color feature separately. The Gaussian shape includes the scale vectors and
rotation quaternions. The color feature refers to the spherical harmonic (SH)
coefficients. Note that they compute a sensitivity score for color and Gaussian
shape features before the attribute compression. During vector quantization,
they only cluster the features with a sensitivity score below a threshold. To
compress the Gaussian shape, they first convert the scale vectors and rotation
quaternions into the upper triangle part of the covariance matrix – a vector ∈ R6.
Then, they use vector quantization to compress the covariance vectors (N × 6)
into a codebook (K × 6) with a corresponding index table (N × K). Here, N
refers to the number of 3D Gaussians, and K refers to the size of the codebook.
Susceptible covariance vectors are added to the codebook after clustering.

As directly optimizing the covariance matrix is not possible [4], they have to
decompose the covariance into scales and rotation quaternions during finetun-
ing. Hence, they reparametrize the scale vector s = ηsŝ to make sure the ŝ is
normalized. Meanwhile, the covariance vector for clustering is also rescaled by
ηs:

Σ = (RŜ)(ŜR) =
1

η2s
Σ. (1)
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As the ŝ is normalized, they can easily decompose a covariance vector into a
normalized scale vector and a rotation quaternion. However, to restore the s,
they have to store one more number – the scaling factor ηs for each Gaussian in
the final compressed file, requiring 7 numbers.

In contrast, we propose to replace the rotation quaternion q ∈ R4 with the
Euler angles e ∈ R3, which requires 6 numbers for the Gaussian shape. Our
replacement strategy keeps the positive definiteness of the covariance matrix
and thus can support direct optimization [4].

1.2 Fair comparison with covariance-based replacement

To achieve a fair comparison, we implement the covariance-based replacement for
the post-training scenarios. Specifically, we do not introduce the scaling factor
ηs as we do not require finetuning in the post-training scenarios. Hence, the
storage of covariance-based replacement and Euler angles-based replacement are
equal now. However, we find that applying RAHT to the covariance vector or
quantizing the covariance vectors into 8 bits can cause severe visual quality
degradation. Hence, we set the quantization bits as 16 and do not apply RAHT
on both Euler-angle-based and covariance-based replacements. Notably, we use
a unique non-linear quantization scheme for covariance-based replacement. For
a covariance vector c, we quantize it with:

cq = ⌊clamp(
c

Sc
+ Zc, 0, 2

b − 1)⌉, (2)

where
Sc =

cl − cr
2b

, Zc = ⌊2b − cr
Sc

⌉. (3)

Here,
cl = cm − λcσ, cr = cm + λcσ, (4)

where cm and σ is the mean value and the standard deviation of c, respectively.
We use the λc to control the value of cl and cr. Notably, we store values less
than cl or greater than cr in float format directly. In the context of preserv-
ing covariance in two distinct data types, namely int and float, it becomes
necessary to incorporate an additional indicator to denote whether the covari-
ance vector associated with each attribute tuple necessitates quantization. Here,
an attribute tuple is defined as the set (opacity, scale, covariance, 0-D
SH coefficients). To circumvent the need for such an indicator, we opt to
position attribute tuples requiring covariance quantization at the start of the
complete attribute tensor, while those exempt from such quantization are posi-
tioned towards the end of the whole attribute tuples.

1.3 Disadvantages of covariance-based replacement

We tune the λc and fix other hyperparameters to obtain the compressed files
that with different sizes and quality. We display the rendering results of the
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Fig. 1: Euler angles-based vs. Covariance-based. “A/B/C” refers to the “λc /
the size of the compressed file / the percent of positive-definite covariance matrices”.
Replacing scales and rotations with covariance leads to white line artifacts, which
greatly affects the visual effect. We adjust the final file size by compressing a portion
of the covariance using the λc.

decompressed 3D Gaussians files in Fig. 1. We list the λc, the final file size,
and the percent of positive-definite covariance matrices for each case. It can be
observed that there are white line artifacts in the covariance-based replacement
strategy. The reason for the appearance of these artifacts is that most of the
covariance matrices become non-positive definite after decompression. As shown
in Fig. 1, when we reduce λc, the artifacts gradually weaken as the percent of non-
positive definite covariance matrices decreases. When the proportion of positive
definite covariance matrices reaches 92%, the artifacts essentially disappear, and
the visual quality is on par with the Euler angles-based replacement strategy.
However, in the case of 92%, the file size is much larger than the Euler angles-
based replacement strategy.

1.4 Impacts of NPD covariance matrices

Q: 8% of covariance matrices are not positive definite (NPD) in the final com-
pressed file. Doesn’t this cause any issues? No, the code still runs normally.
However, in an experiment on the mic scene, we observed decreased PSNR (32.7
→ 32.0) after removing Gaussians with NPD covariance matrices, which sug-
gests that some of the NPD Gaussians still affect the rendering process. This
phenomenon is attributed to the robust implementation: a low-pass filter is ap-
plied to the cov2d to ensure it covers at least one pixel.

2 Hyperparameters and environments of evaluation

Please find the hyperparameter settings in our open-sourced code†. We collect
the encoding time in a machine with an NVIDIA RTX 3090, an Intel Xeon E5
24C48T CPU, and Ubuntu 20.04. We use the evaluation results proposed in the
paper of baselines [2, 6, 7, 9] for comparison.

† https://github.com/ShuzhaoXie/MesonGS
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Table 1: Ablation study of the depth of octree. The unit of Size is MB. Eval-
uations on the Synthetic-NeRF dataset. We record the metrics of the final zip file.
“Points” refers to the number of points before the voxelization step. “Voxels” refers to
the number of voxels after the voxelization step.

depth PSNR (dB) SSIM LPIPS Size (MB) Points Voxels
10 28.69 0.9412 0.0532 1.03 98.5K 96.2K
11 29.30 0.9462 0.0516 1.09 98.5K 97.8K
12 29.47 0.9476 0.0511 1.14 98.5K 98.3K
13 29.51 0.9479 0.0510 1.18 98.5K 98.5K
14 29.51 0.9480 0.0510 1.22 98.5K 98.5K

3 More Ablation Study

Octree depth. The octree expression is a lossy compression. Hence, we em-
ployed an experiment to show the influence of the depth of octree at Tab. 1 on
the Synthetic-NeRF dataset. When the depth is set to 10, there are a significant
number of points allocated to the same voxel, resulting in a substantial loss of
information. However, when the depth reaches 13, only fewer than one thousand
points are merged, resulting in minimal impact on performance.

4 More quantitative and qualitative results

In this section, we list more quantitative results in Tab. 2, Tab. 3, Tab. 4, Tab. 5,
and Tab. 6. As for qualitative results, please download the full rendering results
of the test set at the project page†.

† https://shuzhaoxie.github.io/mesongs/
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Table 2: Mip-NeRF 360 [1] results. “FT” refers to finetune.

3D-GS
Scene PSNR SSIM LPIPS Size(MB)
bicycle 24.90 0.733 0.265 1246.54
bonsai 32.34 0.945 0.182 315.74
counter 29.02 0.913 0.186 266.11
garden 26.89 0.849 0.134 1017.18
kitchen 31.41 0.930 0.121 338.25
room 31.91 0.925 0.204 385.89
stump 26.41 0.757 0.260 922.37
Average 28.98 0.865 0.193 641.73

MesonGS
Scene PSNR SSIM LPIPS Size(MB)
bicycle 24.18 0.699 0.297 46.56
bonsai 30.02 0.921 0.213 12.65
counter 27.61 0.887 0.214 13.82
garden 25.90 0.813 0.181 46.46
kitchen 30.06 0.916 0.137 18.60
room 30.58 0.905 0.229 14.71
stump 25.58 0.727 0.294 39.96
Average 27.70 0.838 0.224 27.54

MesonGS-FT
Scene PSNR SSIM LPIPS Size(MB)
bicycle 24.70 0.720 0.281 46.70
bonsai 31.65 0.940 0.192 12.69
counter 28.70 0.908 0.196 13.86
garden 26.59 0.837 0.155 46.55
kitchen 31.12 0.929 0.124 18.86
room 31.62 0.920 0.213 14.71
stump 25.91 0.740 0.283 39.97
Average 28.61 0.856 0.206 27.62
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Table 3: Synthetic-NeRF [8] results when comparing with 3DGS compres-
sion works. “FT” refers to finetune.

3D-GS
Scene PSNR SSIM LPIPS Size(MB)
chair 35.72 0.987 0.012 66.56
drums 26.18 0.954 0.038 82.30
ficus 35.01 0.987 0.012 70.80
hotdog 37.75 0.985 0.020 35.67
lego 35.89 0.983 0.016 76.73
materials 30.01 0.961 0.035 64.83
mic 35.44 0.992 0.006 73.38
ship 30.97 0.907 0.106 78.17
Average 33.37 0.970 0.030 68.55

MesonGS
Scene PSNR SSIM LPIPS Size(MB)
chair 34.19 0.981 0.017 3.55
drums 25.76 0.947 0.046 3.77
ficus 33.85 0.984 0.015 3.06
hotdog 36.19 0.981 0.027 2.72
lego 34.47 0.976 0.021 4.30
mat 29.04 0.950 0.048 3.97
mic 34.28 0.988 0.012 2.98
ship 30.23 0.896 0.117 4.87
Average 32.25 0.963 0.038 3.65

MesonGS-FT
Scene PSNR SSIM LPIPS Size(MB)
chair 35.05 0.985 0.014 3.56
drums 25.91 0.952 0.041 3.79
ficus 34.44 0.986 0.013 3.06
hotdog 37.29 0.984 0.023 2.72
lego 35.15 0.981 0.018 4.31
mat 29.67 0.958 0.038 3.98
mic 35.06 0.991 0.007 2.98
ship 30.82 0.904 0.111 4.87
Average 32.92 0.968 0.033 3.66
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Table 4: Synthetic-NeRF [8] results when comparing with NeRF compres-
sion works. “FT” refers to finetune.

3D-GS
Scene PSNR SSIM LPIPS Size(MB)
chair 35.72 0.987 0.012 66.56
drums 26.18 0.954 0.038 82.30
ficus 35.01 0.987 0.012 70.80
hotdog 37.75 0.985 0.020 35.67
lego 35.89 0.983 0.016 76.73
materials 30.01 0.961 0.035 64.83
mic 35.44 0.992 0.006 73.38
ship 30.97 0.907 0.106 78.17
Average 33.37 0.970 0.030 68.55

MesonGS
Scene PSNR SSIM LPIPS Size(MB)
chair 31.25 0.971 0.025 1.04
drums 24.93 0.937 0.054 1.22
ficus 32.45 0.979 0.019 1.05
hotdog 31.46 0.965 0.045 0.57
lego 28.95 0.944 0.048 1.13
materials 27.13 0.933 0.062 0.97
mic 32.02 0.982 0.019 1.02
ship 26.75 0.868 0.139 1.21
Average 29.37 0.947 0.051 1.03

MesonGS-FT
Scene PSNR SSIM LPIPS Size(MB)
chair 34.03 0.980 0.019 1.04
drums 25.42 0.946 0.049 1.23
ficus 33.04 0.981 0.018 1.04
hotdog 35.73 0.980 0.031 0.58
lego 32.47 0.968 0.035 1.15
materials 28.87 0.952 0.047 0.98
mic 34.22 0.989 0.010 1.03
ship 30.20 0.899 0.123 1.20
Average 31.75 0.962 0.042 1.03
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Table 5: Tank&Temples [5] results. “FT” refers to finetune. We directly use the
pre-trained checkpoints provided by 3D-GS [4]. Hence, please check the 3D-GS paper [4]
to obtain the detailed evaluation metrics of 3D-GS.

MesonGS
Scene PSNR SSIM LPIPS Size(MB)
train 21.34 0.792 0.235 13.03
truck 24.35 0.851 0.182 20.93
Average 22.85 0.822 0.208 16.98

MesonGS-FT
Scene PSNR SSIM LPIPS Size(MB)
train 21.95 0.807 0.218 13.06
truck 24.70 0.868 0.167 20.93
Average 23.32 0.837 0.193 16.99

Table 6: Deep Blending [3] results. “FT” refers to finetune. We directly use the pre-
trained checkpoints provided by 3D-GS [4]. Hence, please check the 3D-GS paper [4]
to obtain the detailed evaluation metrics of 3D-GS.

MesonGS
Scene PSNR SSIM LPIPS Size(MB)
drjohnson 28.61 0.894 0.260 27.87
playroom 29.57 0.896 0.259 21.65
Average 29.09 0.895 0.260 24.76

MesonGS-FT
Scene PSNR SSIM LPIPS Size(MB)
drjohnson 29.00 0.900 0.252 27.87
playroom 30.03 0.902 0.250 21.66
Average 29.52 0.901 0.251 24.76
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