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Abstract—The advent of deep learning has precipitated a surge
in public machine learning as a service (MLaaS) for multimedia
analysis. However, reliance on a single MLaaS can result in
product dependency and a loss of better performance offered by
multiple MLaaSes. Consequently, many enterprises opt for an in-
tercloud broker capable of managing jobs across various clouds.
Though existing works explore the efficient utilization of inter-
cloud computational resources and the enhancement of inter-
cloud data transfer throughput, they disregard improving the
overall accuracy of multiple MLaaSes. In response, we conduct
a measurement study on object detection services, which are de-
signed to identify and locate various objects within an image. We
discover that combining predictions from multiple MLaaSes can
improve analytical performance. However, more MLaaSes do not
necessarily equate to better performance. Therefore, we propose
SkyML, a user-side MLaaS federation broker that selects a subset
of MLaaSes based on the characteristics of the request to achieve
optimal multimedia analytical performance. Initially, we design
a combinatorial reinforcement learning approach to select the
sound MLaaS combination, thereby maximizing user experience.
We also present an ingenious, automated taxonomy unification
algorithm to minimize human efforts in merging MLaaS-specific
labels into a user-preferred label space. Moreover, we devise
an optimized ensemble strategy to aggregate predictions from
the selected MLaaSes. Evaluations indicate that our similarity-
based taxonomy unification approach can reduce annotation costs
by 90%. Moreover, real-world trace-driven evaluations further
prove that our MLaaS selection method can achieve similar levels
of accuracy with a 67% reduction in inference fees.

Index Terms—Multimedia analysis, sky computing, machine
learning services, multimedia clouds, taxonomy unification

I. INTRODUCTION

DEEP learning has recently gained substantial attention
across diverse sectors. It has not only attracted industries

(e.g., Robotics [1]) closely related to computer science but
also penetrated other sectors (e.g., E-commerce [2]) as com-
panies incorporate deep learning into their product pipelines.
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Nonetheless, companies in vertical industries often struggle
with a shortage of experts adept at maintaining deep learning
services. This typical predicament leads them to lease deep
learning services offered by major service providers. For
instance, ZOZO [2] leverages Amazon Rekognition [3] to
expedite the reviewing process of user-uploaded images by up
to 40% [4]. Despite this, the drawback of relying solely on one
cloud service is its high instability, leading many companies to
utilize multiple cloud services to enhance stability and gains.

To make full use of multiple clouds, Weinman [5] pro-
posed a standard to IEEE for portability, interoperability, and
federation among cloud providers. However, this standard is
less practical as it necessitates standardization of interfaces
by every cloud provider. Later, sky computing [6] proposed
to use a compatibility layer to handle different interfaces.
Inspired by this design proposition, SkyPilot [7] is proposed
for easily and cost-effectively running workloads on any cloud
VMs. SkyPlane [8] improves intercloud data transfer speed
using indirect paths. Despite their effectiveness, these solutions
have not covered a popular cloud service – MLaaS (i.e.,
ChatGPT [9] operates as a machine learning service). The
use of multiple MLaaS providers is also known as MLaaS
federation. Such a design enables users to enjoy higher-quality
cloud service inference results at a more affordable price.
For single-label classification services, FrugalML [10] studies
to select the best MLaaS from multiple ones. Additionally,
FrugalMCT [11] analyzed whether to request an additional
MLaaS to improve the accuracy based on the prediction of
a base MLaaS. Above all, these works are based on two
questionable assertions: 1) Adding more MLaaSes can lead
to at least the same accuracy; 2) Different MLaaSes use the
same vocabulary to represent predictions.

To verify these assertions, we first investigate MLaaS-
related measurement studies. However, most of these studies
focus on irrelevant MLaaSes such as white-box services [12],
[13], ML training platforms [14], or out-of-date MLaaSes [15].
The only related work [16] focuses on collecting inference
results to explore whether and when an MLaaS was updated.
Hence, we have to conduct an independent measurement study.
Considering the task-specific nature of MLaaSes, we primar-
ily focus on evaluating the performance of object detection
services. Object detection [17] is a versatile vision task that
aims to detect the locations and categories of all objects in an
image, with applications across diverse multimedia domains
[18]–[20], such as video analytics [21], [22] and autonomous
driving [23], [24]. The detection result consists of a list of

0000–0000/00$00.00 © 2021 IEEE



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 2

multimodal tuples. Each tuple contains information about a
detected object, including its class, represented by a predicted
category name, its location defined by a quaternion bounding
box, and a confidence score indicating the accuracy of the
prediction. Based on the measurement study, we confirm that
each MLaaS possesses different sweet-spot categories. For
example, AWS’s “monitor” usually represents the same object
as Azure’s “television”. Moreover, we observe that naively
assembling all MLaaSes can introduce extra false-positive
results. For example, the accuracy of ensemble predictions
of AWS and Azure outperforms the ensemble predictions of
AWS, Azure, and Google for some input samples. To fully
leverage the potential of these MLaaSes, it is advantageous
to harness the expertise of multiple service providers and
carefully select the appropriate combination of MLaaSes.

Based on the analysis above, we summarize three pain
points in realizing MLaaS federation. First, different MLaaS
providers use varying taxonomies. Unifying thousands of
MLaaS-specific labels is error-prone and time-consuming, so
we need a manual-free algorithm to unify the description lan-
guages used in various MLaaSes. Second, the computational
complexity associated with selecting the suitable provider set
is heightened by the combinatorial nature of the problem,
especially when dealing with resource-constrained edge de-
vices. The extensive list of providers and the exponentially
increasing number of choices render the brute-force approach
impractical and non-scalable for real-world scenarios. Third,
after receiving analytic results from various service providers,
further design is required to merge these results to offer
optimal aggregated results efficiently.

To tackle these challenges, we introduce SkyML, a federated
MLaaS broker that attains optimal performance in multime-
dia analytics. Our framework comprises MLaaS combina-
tion selection, taxonomy unification, and prediction ensemble.
Specifically, we propose a combinatorial reinforcement learn-
ing (RL) approach to address the provider selection problem.
To overcome the computational challenge of selecting the
right MLaaS subset, we employ a nearest-neighbor algorithm
to map continuous action spaces to discrete binary action
spaces within extensive combinatorial domains. The taxonomy
unification part maps MLaaS-specific labels onto user-defined
labels based on similarities calculated from ground truth and
MLaaS predictions. In the ensemble part, we optimize the total
analytic results by employing the affirmative voting strategy
and weighted box fusion to reduce the impact of outliers. We
evaluate the performance of both the taxonomy unification
method and the RL-based provider selection algorithm by
conducting extensive experiments with real trace-driven data.

In summary, our contributions are:
• Our measurement studies on prominent MLaaS providers

uncover significant discrepancies between them and high-
light the immense potential of MLaaS federation to
enhance overall analytic performance.

• We formulate the MLaaS federation problem as a combi-
natorial provider selection problem and establish its NP-
hardness. Subsequently, a combinatorial reinforcement
learning-based approach is proposed to solve the problem
and achieve optimal accuracy.

TABLE I: Average precisions (AP) of different MLaaSes.

Provider mAP AP50 AP75 Number of Labels
AWS 18.81 28.88 20.84 75
Azure 15.10 24.38 16.14 163
GCP 16.23 23.03 18.12 120
COCO - - - 80
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Fig. 1: Comparison of AP across multiple MLaaS providers
for the top 10 most frequent categories.

• Similarity-based taxonomy alignment and efficient voting
strategies are proposed to achieve vocabulary unification
among providers and aggregate the final results.

• Simulations based on real-world traces show that our
framework can achieve a 67% reduction in inference
costs while maintaining comparable accuracy to other
benchmark approaches. Additionally, our similarity-based
taxonomy alignment reduces the labor cost by 90%.

This paper extends our previous work [25] with several
improvements. First, we have generalized the framework by
introducing the MLaaS Federation within the context of sky
computing. Second, in Sec. III, we update the problem for-
mulation and add complexity analysis. Third, we have devised
an automated approach to address the taxonomy alignment re-
quirement arising from using different taxonomies by multiple
cloud providers. Finally, we have enhanced the evaluation to
provide deeper insights and discussed the limitations.

The rest of this paper is structured as follows. Sec. II
proposes the measurement study. Sec. III formulates the
provider selection problem and explains the soundness of
the combinatorial RL approach. Sec. IV introduces the three
parts of SkyML. We evaluate SkyML in Sec. V. Sec. VI
and Sec. VII present the related work and the limitations,
respectively. Finally, Sec. VIII provides the conclusion.

II. MEASUREMENT & MOTIVATION

This section provides an analysis of the latency and ac-
curacy of three leading MLaaSes: AWS Rekognition [3],
Azure Computer Vision [26], and Google Cloud Vision AI
[27], and demonstrates the significant benefits of multi-MLaaS
federation along with the feasibility of achieving this. We use
AWS, AZU, and GCP to represent these three MLaaSes.

We conducted the measurements in 2021. Virtual machines
(VMs) located in Singapore and the USA were rented as
clients to request these MLaaSes. These VMs have the same
configuration. We requested these MLaaSes via Python SDK
and captured the TCP packet by tcpdump. We focus on
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(a) Ground truth, AP50 : 1.00 (b) AWS, AP50 : 0.64 (c) AZU, AP50 : 0.56 (d) GCP, AP50 : 0.56

(e) AWS+AZU, AP50 : 0.71 (f) AWS+GCP, AP50 : 0.69 (g) AZU+GCP, AP50 : 0.67 (h) All MLaaSes, AP50 : 0.68

Fig. 2: Visualization of the predictions of object detection services. We display the ensemble predictions and the corresponding
metrics under different MLaaS combinations.
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Fig. 3: Right: The inference latency in both routes (SG-SG and
US-SG) is similar within a 24-hour period, indicating that our
division of the total latency is correct. Left: The transmission
latency is significantly lower than inference latency.

object detection as it is versatile and has applications across
diverse multimedia domains. The accuracy metrics used by
object detection are mean average precision (mAP ), mAP
with intersection over union (IoU) threshold 50% (AP50), and
mAP with IoU threshold 75% (AP75) [28]. We chose the
COCO Val 2017 [29] dataset to test the accuracy. In the case
of AWS and AZU, we chose Singapore as the cloud service
region as the closest region always leads to the shortest latency.
In contrast, GCP automatically selects the MLaaS region for
users, preventing users from selecting their preferred region.
In this context, the term “region” refers to the location of the
MLaaS, while the “location” is the location of the user device.

A. Why We Need SkyML

Tab. I compares the AP of AWS, AZU, and GCP on the
COCO dataset. Though AZU demonstrates the lowest average
performance, it does not imply poor performance by AZU in
all categories within the dataset. We select the top 10 most
frequent categories within the COCO dataset and compute
their AP50 scores of AWS, AZU, and GCP, respectively.
Fig. 1 shows that AWS performs the best in categories such as
“person”, “chair”, “car”, and “handbag”. AZU performs best in
categories such as “cup”, “bottle”, and “dining table” whereas
AWS failed to identify any objects in these categories. These

observations demonstrate that the optimal MLaaS provider
depends on the characteristics of the input.

Now, we reveal the benefits of the MLaaS federation.
Following the ensemble strategies that will be introduced in
Sec. IV-D, we calculate the AP50 of AWS, AZU, GCP, and
their combinations1, as demonstrated in Fig. 2. We observe
that the ensemble predictions from three MLaaSes yield higher
AP50 values than predictions from a single provider. However,
upon comparing Fig. 2e and Fig. 2h, we find that the ensemble
predictions of AWS and AZU (AP50 = 0.71) are superior
to the ensemble predictions of the three cloud providers
(AP50 = 0.68). These findings suggest that including addi-
tional MLaaSes can lead to higher accuracy. However, the
addition of more MLaaSes does not imply a guarantee of
higher accuracy.

B. Why SkyML is Possible

Typically, requesting a cloud service consists of transmis-
sion and inference latency. The transmission latency relies on
the input data size, bandwidth, and the round-trip time (RTT)
between the client and the MLaaS. The inference latency
is determined by the cloud service, independent of network
conditions. The time to send the minuscule response data over
the network is negligible. As shown in Fig. 3, our measurement
validates that the MLaaS has similar latency properties.

Considering the scenario of requesting multiple MLaaSes, n
inputs are injected into the network. The initial route for these
packets is the path between the user device and the router, such
as 5G WiFi. With a peak upload speed of 10Gbps [31], the
5G network can transmit at least 10 images in 1 ms. Hence,
the initial route is not the bottleneck of transmission latency.
Subsequently, these packets simultaneously follow different
paths to reach their respective MLaaS providers. Therefore, the
overall transmission latency can be determined by selecting

1The data in our paper reflected the SOTA performance for object detection
by the time we conducted the measurement. Deformable DETR [30] was used
with an AP50 of 65.2% on MSCOCO.
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TABLE II: Notations used in SkyML’s description.

Notation Description
I Set of input.
i An input (i ∈ I).
M Set of MLaaS providers.
m An MLaaS provider (m ∈M).

φ A binary vector (φ ∈ {0, 1}‖M‖ and ‖ φ ‖6= 0).
φm = 1 iff the MLaaS provider m is selected.

cm Cost to request MLaaS provider m for input i.
Pm Prediction from MLaaS provider m for input i.
Pall Set of predictions from all avaialble MLaaSes.

P Set of predictions from MLaaS providers selected by
φ for input i.

C Budget for processing the input i.
E(·) Function to ensemble predictions from MLaaSes.
A(·) Function to score the accuracy of the final prediction.

the maximum transmission lag among the n inputs. During
the inference phase, the n MLaaSes simultaneously predict
the results, resulting in an inference latency equivalent to the
maximum inference time among the n MLaaSes. Based on the
above analysis, we conclude that the time required to request
multiple MLaaSes is almost the same as requesting one. In
summary, requesting multiple MLaaSes is practically feasible.

III. PROBLEM FORMULATION

MLaaS refers to a function that receives multimedia input
data, such as an image, a sequence of text, or a slice of
speech, and returns the predicted output. Examples of MLaaS
include categorizing the image, translating text, or generating
text based on the input speech. The specific input and output
formats vary depending on the type of MLaaS. Here, our
formulation is applicable to various tasks.

Let I = {I1, I2, ..., IT } be a set of inputs to be processed
by a set ofM MLaaS providers. The goal is to determine the
optimal selection of MLaaS providers that maximize accuracy
for all input data while ensuring the cost is less than the
budget. This selection is based on the notations outlined in
Tab. II. The formal formulation of the MLaaS federation
problem (Ω) for each input is:

max A(E(φ,Pall)),
s.t.

∑
m∈M

cmφm ≤ C,

φm ∈ {0, 1}.
(1)

Here Pall represents the predictions of all available MLaaS
providers, E(·) is the method to ensemble returned predictions,
A(·) is the function to calculate the accuracy, C is the budget
to request the MLaaSes for current input, cm is the cost to
invoke the m-th MLaaS, and φm indicates whether the m-th
MLaaS selected.

The formulation of Ω encompasses two hidden issues: 1)
Pall is not known in advance; 2) even if Pall were known in
advance, what method should be used to calculate φ? Here,
we first assume Pall is known and determine the method for
calculating φ through complexity analysis. Then, we analyze
how to provide the model with prior knowledge about Pall.

Complexity Analysis. For a given input data, assuming
Pall = {P1, P2, ..., P|M|} are known in advance, Pm can

be represented by a matrix with size of (rowm, d), where
rowm represents the number of predictions from the m-th
cloud service for this input data. d represents the dimension
of each inference result, which is related to the task of the
cloud inference service, such as d = 6 for object detection
service, including category, confidence, and the coordinates of
the bounding box.

Then, the inference results of selected MLaaSes can be
concatenated as a matrix with a size of (

∑|M|
m=1 φmrowm, d),

denoted as P = [φ1P
>
1 , φ2P

>
2 , ..., φ|M|P

>
|M|]

>. The vec-
torized form of P is φ>Pall. According to Sec. IV, the
ensemble function E(·) includes two steps, i.e., label mapping
and result pruning. Label mapping refers to replacing the
cloud service labels with user space labels, and those that
cannot be replaced are discarded; result pruning refers to
deleting duplicate inference results. Hence, both label mapping
and result pruning are equivalent to a filter, which can be
represented by multiplying P with a 0-1 filter matrix. Here,
RE1(P) and RE2(P) represent the filter matrices of the two
steps above, respectively. Therefore, the ensemble function
E(·) can be expressed as:

E(φ) = φ>PallRE1(φ>Pall)RE2(φ>Pall). (2)

Hence, E(φ) is at least a polynomial of degree 3 in φ.
Next, we analyze the complexity of the accuracy function
A(·), which is task-specific. Here, we take the object detection
task as an example, and thus, the A(·) becomes the function
to calculate mAP. Let PE = E(φ). We simplify A(·) to the
process of calculating AP50. We first sort PE by confidence.
After that, based on PE , the ground truth annotations G,
and the IoU threshold, we split detection results into three
types, including true positive (TP), false positive (FP), and
false negative (FN). As FN refers to the ground truth object
that was not detected, there are virtually only two types of
inference results, i.e., TP and FP. In short, the process of
obtaining TP and FP is equivalent to performing element-
wise discrimination on PE , which can be represented as
RTP (·) : Rd×6 → {0, 1}d and RFP (·) : Rd×6 → {0, 1}d.
Applying RTP (·) and RFP (·) to each inference output yields
two binary vectors, VTP and VFP . Before calculating the
precision vector and recall vector, we obtain the CVTP and
CVFP by accumulating VTP and VFP , respectively. This
accumulation process can be expressed as CV = V >U , where
U is a square matrix with upper triangle elements equal to 1.
We calculate the precision vector by:

Pre =
CVTP

CVTP + CVFP
, (3)

and calculate the recall vector Rec by CVTP /|G|, where |G|
denotes the number of ground truths. Finally, the AP50 value
can be calculated with:

AP50 = Inter(Pre)>(Rrec(Rec)−Rec), (4)

where process of Rrec is described in Algo. (1). And
Inter(Pre) is the maximum precision corresponding to the
recall value greater than the current recall value. In simple
terms, it is the maximum precision value to the right. The
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Algorithm 1 Workflow of Rrec.

Require: Recall Vector Rec.
1: n← length of Pre;
2: for i = n− 2 to 0 do
3: Reci ← Reci+1;
4: end for
5: Recn−1 ← 1;
6: return Rec.

value of AP50 is the integration of the interpolated precision-
recall curve in [0, 1], which is at least a linear transformation.
We eliminate the Inter(·) step for convenience. Finally,
substituting PE , RTP (·), and RFP (·) into Eq. (4) yields the
relationship between A(·) and PE , as shown in Eq. (5):

A(PE) =

[
RTP (PE)

(RTP (PE) +RFP (PE))

]
×[

Rrec

(
R>TP (PE)U

|G|

)
− R>TP (PE)U

|G|

]
,

(5)

where A(PE) is at least a polynomial of degree 1 in PE .
In summary, the object function A(E(·)) is at least a

cubic term of φ. Meanwhile, assuming all the predictions
from M providers for input i are known, we can reduce
the above problem to a multidimensional quadratic knapsack
problem, an NP-hard problem [32], [33]. Specifically, this
optimization problem aims to generate binary options (φ) to
maximize overall accuracy while satisfying the cost constraint.
In practice, however, getting all the predictions (Pall) before
the request is explicitly infeasible.

Prior Knowledge of Pall. To inject the prior knowledge
of Pall into the SkyML agent, we first profile all available
MLaaSes with a pre-prepared request dataset. Then, we try
building a precise profile dataset, with each sample as <I,
φ>, and employing the supervised learning algorithm to inject
the prior knowledge into the agent. However, it is computa-
tionally expensive to obtain the precise profile dataset since
it involves evaluating the accuracy and cost of all possible
combinations ofMMLaaSes, which grows exponentially with
the number of MLaaSes. Furthermore, the MLaaS model and
the corresponding training dataset undergo updates as deep
learning algorithms evolve, posing challenges for achieving
global optimization, particularly in long-term considerations.

Fortunately, RL provides an alternative perspective for this
problem. The key is that RL can update the model parameters
to maximize the expected rewards with restricted trials, far
less than 2|M|−1. Hence, the training complexity of RL is far
less than that of supervised learning methods. Additionally, RL
agents are typically small and can be trained on edge devices,
making them suitable for addressing the challenges posed by
inconsistent versions of MLaaSes.

However, if we leverage RL, a difficult issue of representing
a huge discrete action space emerges. The reason is that if the
selection of MLaaSes (φ) becomes the action, then the size of
this discrete action space becomes exponential to the number
of available MLaaSes. Fortunately, current works [34]–[36] on
solving combinatorial RL algorithms provide feasible solutions
for dealing with a large discrete action space. Considering

these unique constraints, we present a combinatorial RL-based
approach to resolve the provider selection problem.

IV. SKYML FRAMEWORK

In this section, we introduce SkyML, a broker designed to
adaptively select the optimal combination of MLaaS providers
for various inputs. It also automatically aggregates predictions
from the chosen MLaaS providers to maximize analytical per-
formance while minimizing costs. Our discussion begins with
an introduction to the workflow of this broker. Subsequently,
we delve into the provider selection process, taxonomy unifi-
cation, and ensemble techniques.

A. Framework Overview

Before deploying SkyML, we will send a pre-prepared
request dataset to all MLaaSes and record the returned pre-
dictions to construct a profile dataset. Subsequently, we use
the profile dataset to train the RL agent, giving it some prior
knowledge about the available MLaaSes.

After deploying SkyML, its workflow is illustrated in Fig. 4,
a typical scenario of multimedia content analytics. In the
provider selection part, the broker first extracts image features
(referred to as state st) at the edge-side client. Then, it
generates a proto action ât using the image features and the
actor-network trained by the soft actor-critic (SAC) algorithm
[37]. Subsequently, the broker maps this proto action into a
discrete binary vector at. The edge client sends requests to
the providers selected by the action at and waits to receive
all the predictions from the selected providers. The cloud
providers, labeled as Cloud 1, 2, ..., and n, are the available
MLaaS providers. Next is the taxonomy unification part. Since
different MLaaS providers use different terms to represent
the same category, the broker must identify and unify labels
into a standardized form to meet users’ requirements and
ensure smooth operation in the subsequent ensemble part.
The ensemble phase aims to eliminate duplicate predictions
while retaining the correct ones. There are 12 pathways to
choose from, and we ultimately select the Affirmative-WBF
path based on our measurements in Sec. II. In this part, the
broker also generates rewards rt, which are stored in the replay
buffer along with the binary action at, the state st, and the
next state st+1. After passing through the modules above, the
final prediction is made on the image. The remainder of this
section provides further details about the SkyML framework.

B. Provider Selection: A Combinatorial RL Approach

We first describe the state, action, and reward design for our
provider selection method. Here, we want to select the most
appropriate MLaaS subset to obtain the best accuracy at the
minimum cost. Our primary goal is to achieve optimal analytic
performance.

State. As shown in the top left of Fig. 4, we extract
input features by a pre-trained MobileNet model, which is
a commonly used model for image classification. This feature
is the state st acquired from the environment at timestamp t,
corresponding to the t-th input sample.
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Fig. 4: Workflow of SkyML. The blue labels are user-defined labels. The purple ones are MLaaS-specific labels.

Action. In Sec. III, we use a binary vector φ to represent the
possible combination of ||M||MLaaSes. Here, the action at is
defined similarly to φ. Then the size of action set A is 2||M||−
1. Thus, the action space of our provider selection problem
is an exponential multiple of ||M||. Due to the difficulty of
representing such a large discrete action space, we map the
predicted action â from continuous action spaces to an element
in the discrete binary vector set A:

τ(â) = arg min
a∈A

|a− â|2, (6)

where τ is the nearest-neighbor mapping from the continuous
space R||M|| to the discrete binary vector set A. It returns the
action a that is the closest to the predicted action â according
to the l2 distance. The action a will be stored in the replay
buffer along with other data elements.

Reward. The reward function considers both the mAP
and the inference cost. The mAP calculation requires using
ground truth, as described in [28]. Nevertheless, not all inputs
have ground truth, especially in the case of online inference.
Therefore, we consider the ensemble prediction of all the
MLaaS providers as the ground truth for the data collected
during inference. Despite the suboptimal mAP of the ensemble
prediction with all MLaaSes, it is commendable for achieving
similar performance to all MLaaSes while incurring fewer
inference fees. In summary, the reward is defined as:

rt = tanh (vt + βct), (7)

where vt represents the AP50 of the prediction, ct denotes
the cost required to request the subset of MLaaS providers
selected by action at. β is a non-positive hyperparameter to
ensure the selection with a lower cost. We set the vt as −1 if
none of the MLaaSes are selected.

We employ the Soft Actor-Critic (SAC) algorithm to train
the agent. SAC is an off-policy actor-critic algorithm that

operates within the maximum entropy. Algo. 2 outlines the
training details for the RL agent. To begin with, SkyML
initializes the necessary components. We use a fully connected
network that contains two hidden layers to represent the
networks mentioned above. We utilize the multivariate normal
distribution to represent the probability density function (PDF)
of policy π. Thus, we use two networks to fit the mean and
variance of policy π. We use two soft Q-functions to address
the positive bias in the policy improvement step, which is well-
known for negatively impacting the performance of value-
based methods [38]. Second, for each step, SkyML extracts
the feature and selects the action â with policy πθ(·|s), and
then maps â to a binary action a. After that, SkyML sends
the binary action into the environment to observe the done
signal d, the reward r, and the next state s′. It next stores
(s,a, r, s′, d) to replay buffer B. During training, a batch of
transitions is sampled from replay buffer B to update the agent.
The target of Q-network is given by:

y(r,s′,d)=r+γ(1−d)(minj=1,2Qφtarg,j (s
′,ã′)−α log πθ(ã

′|s′)), (8)

where ã′ is sampled from πθ(·|s′). Then we can update two
Q-networks Qφi , i = 1, 2 by:

∇φi
1

|B|
∑

(s,a,r,s′,d)∈B

(Qφi(s,a)− y(r, s′, d))2, (9)

and update the policy by:

∇θ
1

|B|
∑
s∈B

(
min
i=1,2

Qφi(s, ãθ(s))− α log πθ(ãθ(s)|s)
)
,

(10)
where ãθ(s) is a sample from πθ(·|s′). At last we update the
target networks Qtarg,i, i = 1, 2 with:

φtarg,i ← ρφtarg,i + (1− ρ)φi. (11)
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Algorithm 2 Training the RL agent with SAC.
1: Initialize policy parameters θ, Q-function parameters φ1, φ2,

replay buffer B, hyperparameter β;
2: Set target Q-function parameters equal to main parameters
φtarg,1 ← φ1, φtarg,2 ← φ2;

3: for time=1,...,T do
4: Observe an input, extract state s and select action â ∼ πφ(·|s);
5: Get the nearest binary vector a of â in l2 distance;
6: Request the MLaaS providers selected by a;
7: Store (s,a, r, s′, d) to replay buffer B;
8: if it’s time to update then
9: for j in range(update times) do

10: Randomly sample a batch of transitions B =
{(s,a, r, s′, d)} from B;

11: Compute targets for the Qφ1 , Qφ2 using Eq. (8);
12: Update Qφ1 , Qφ2 using Eq. (9);
13: Update policy using Eq. (10);
14: Update target Q-networks using Eq. (11);
15: end for
16: end if
17: end for

This part is in the top center of Fig. 4. SkyML will request
the MLaaSes selected by the action at next.

C. Taxonomy Unification: A Manual-Free Apporach

The core task of a cloud broker is to satisfy users’ re-
quirements. After receiving predictions from selected MLaaS
providers, SkyML needs to standardize presentations of the
returned predictions to prevent ambiguity. This ambiguity
mostly comes from different taxonomies of different MLaaSes.
Specifically, in the object detection service, this problem is
caused by MLaaS-specific categories. For an input image,
this service returns a list of detections D = [d1, d2, ..., dld ],
where di is given by a triple [li, fi, bi] that consists of the
corresponding category li, the corresponding confidence score
fi, and the bounding box bi. ld represents the number of
objects detected in this image. However, services usually
return different category names for the same object, i.e.,
“motorbike” vs. “motorcycle”. It is necessary to merge these
service-specific labels into a user-defined format.

However, unifying taxonomies from different MLaaSes by
hand is time-consuming and error-prone [39], [40]. UniDet
[41] presented a formulation to construct a unified taxonomy
across different datasets automatically. However, they ignored
label hierarchies and tree-liked mappings. For example, sup-
pose the user wants the broker to return two “dog” labels but
selected MLaaSes return “chihuahua” and “redbone”. In that
case, we should transform these two labels into “dog” even
though the returned categories are more elaborate.

Given categories of multiple MLaaS providers, the task
of this part is to merge these categories into a user-defined
taxonomy. However, there are multitudinous possible mapping
relations between MLaaS-specific and user-defined categories.
Assume there are |M| MLaaSes and MLaaS i has ni labels.
The size of user-defined label space Lu is nu. Then the
number of possible mappings R is the same as putting Σ

|M|
i=0ni

different balls into nu different boxes:

|R| = nu!×
( |M|∑
i=0

ni

nu − 1

)
. (12)

For three MLaaS-specific label spaces and the user-defined
one (COCO) that is presented in Tab. I, the number of overall
possible mappings is about 4.1×10199. Hence, we must define
a rule to eliminate impossible mappings and acquire user-
satisfied mappings.

As shown in the central bottom part of Fig. 4, We achieve
this pruning requirement with the similarity derived by apply-
ing accuracy metrics. For MLaaS i, we represent the mapping
between its label space Li to user-defined label space Lu by
Ti ∈ {0, 1}|Li|×|Lu|. To obtain Ti, we first collect predictions
P from all available MLaaSes for user-given datasets. We
group these predictions by category, i.e., Pic contains all the
predictions in category c that from MLaaS i. Second, we
compute similarities between user-defined labels and MLaaS-
specific labels. Given predictions Picm of an MLaaS-specific
label cm and ground truth Gcu of user-defined label cu, we
calculate the similarity Scm,cu with:

Scm,cu = A(Gcu ,Picm , τ), (13)

where A(·) is the function to measure the accuracy perfor-
mance of the corresponding task or service, and τ is the
IoU threshold, which is used to check whether two boxes are
matched. Note that we swap roles of the prediction and the
ground truth. For example, the form to calculate the accuracy
should be A(P,G), but here we exchange places of two input
parameters to calculate the similarity, i.e., A(G,P). As the
number of MLaaS predictions is always less than the size of
ground truths, it could naturally magnify recall values.

The computational complexity to caclulate the similarity
matrix S is O(ξ · |U| · nu ·

∑|M|
i=0 ni), where ξ is the com-

putational complexity of the similarity function and |U| is the
size of the user-given dataset. Finally, for each MLaaS-specific
label cm, we sort and record the user-defined category cum that
is most similar to it. Then the Tcm,cum is assigned with 1, and
the rest part of the vector Tcm is turned into 0.

This method is universal and can be easily transferred to
other tasks by substituting the similarity function with a task-
dominated accuracy measurement function or a task-specific
loss function. For example, we can take mAP as the similarity
function for the object detection service and KL divergence as
the similarity function for the classification service.

D. Ensemble Part

Fig. 2 illustrates that using numerous MLaaS can lead to
enhanced precision. However, suppose we naively aggregate
the predictions of selected MLaaSes. In that case, the final pre-
dictions usually perform poorly compared to those of a single
MLaaS due to the false positive and repetitive predictions.
Therefore, we propose an efficient strategy to ensemble the
predictions, which consists of two steps: voting and ablation.

Voting Step. Voting methods are important in this con-
text, and common approaches include Affirmative, Consensus,
and Unanimous [42]. We group the unified detections into
G = [g1, g2, ..., gr], where gi, i ∈ {1, 2, ..., r} is a subgroup of
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detections, and r represents the number of objects recognized
by selected MLaaSes. The detections dp and dq in gi must
confirm that IoU(bp, bq) > 0.5 and np = nq , in which
IoU(a, b) refers intersection over union. Let N be the number
of selected MLaaSes. After this, we adopt the three voting
methods: 1) Affirmative. This method considers all groups
in G to be valid. Therefore, a prediction is deemed valid
if any MLaaSes claims that a region contains an object. 2)
Consensus. This method retains groups where at least half of
the MLaaSes (N/2) agree that a region contains an object or
more. In other words, a region is considered to contain an
object when most clouds agree. 3) Unanimous. This method
considers only the groups with a size equal to N , indicating
that all MLaaSes must agree that the region contains an object.

We choose affirmative as the primary voting method. Be-
cause the MLaaSes are more of a complementary relation-
ship, their predictions do not overlap much, as analyzed in
Sec. II. We select the affirmative voting method as our pri-
mary approach. This decision is based on the complementary
relationship between the three MLaaSes and the minimal
overlap in their predictions, as analyzed in Sec. II. By using
consensus or unanimous strategies, some true-positive results
may be excluded. Additionally, the evaluation results from
[42] demonstrate the superiority of the affirmative method over
other approaches.

Ablation Step. Bounding boxes are often duplicated within
a group, which results in an increased number of false-
positive predictions and a decrease in mAP. To mitigate
false-positive predictions, researchers have introduced three
techniques: Non-Maximum Suppression (NMS) [43], Soft-
NMS [44], and Weighted Boxes Fusion (WBF) [45]. NMS
selects and keeps only the bounding box with the highest
confidence score while discarding all other bounding boxes.
However, NMS inevitably eliminates overlapping object detec-
tions, which leads to the introduction of Soft-NMS. Soft-NMS
reduces the confidence score of overlapping detections instead
of completely discarding them. Nevertheless, both NMS and
Soft-NMS discard redundant boxes, preventing them from
generating accurate localization predictions for objects from
different models. WBF calculates the weighted average of the
bounding box coordinates within a group to determine the
retained box, utilizing the confidence score of the boxes as
the weight. Additionally, the confidence score of the retained
box is calculated as the average of the confidence scores from
the boxes within the group.

Since the WBF method demonstrates superior performance
compared to NMS and Soft-NMS [45], we choose WBF as
the primary method for the second ensemble step. As depicted
in Fig. 4, during the ensemble phase, we initially apply the
voting method to each cluster of similar boxes. Subsequently,
we employ the ablation method to eliminate duplicate boxes.

V. PERFORMANCE EVALUATION

This section presents a thorough evaluation of SkyML’s
performance through comprehensive experiments. Initially, we
evaluate the performance of the provider selection approach.
Subsequently, we analyze the impact of our approach, based

on similarity, for integrating MLaaS-specific labels into the
user-defined label space. Specifically, through real trace-driven
evaluations, we provide clear evidence of SkyML’s superiority
over alternative benchmark approaches.

A. Setup and Methodology

Evaluation Setup. We collect predictions of COCO 2017
from AWS, AZU, and GCP to build the profile dataset to
train the RL agent. We open-sourced the code and data2. AWS
and GCP incur an inference cost of 0.001 USD per request,
whereas AZU’s cost varies by approximately 10% across
regions. Since our measurements were conducted in Singapore
with AZU’s cost being 0.001 USD per image in this region,
the inference cost for all MLaaSes mentioned above is set
at 0.001 USD per image. We implemented the RL algorithm
using the SpinningUp framework [46], with added support for
GPU training on a server equipped with an NVIDIA 1080
Ti GPU, an Intel(R) Xeon(R) CPU E5-2650 v4@2.20GHz,
and 64 GB of memory. The RL environment is implemented
in Python for compatibility purposes. The learning rate η for
both the actor-network and the Q-networks is set to 0.0001.
Additionally, we assign values of 0.9 and 0.2 to γ and α
respectively. We set β to 0 in order to maximize the mAP.
The batch size is 1000, the training epoch is 100, and there are
2000 steps per epoch. For taxonomy unification, we employ
AP50 as the similarity function and 80 labels of the COCO
dataset as the user-defined label space.

Baseline Methods. We compare our approach with the fol-
lowing baselines. 1) RAND-1: This method randomly selects
an MLaaS for each input. 2) RAND-N: This method randomly
selects an MLaaS subset for each input. 3) ENS: This method
selects all MLaaSes for each input. 4) SkyML-OF: This is
the original SkyML, which uses ground truths of COCO to
generate the reward. 5) SkyML-OL: This method relies on
ensemble predictions from all MLaaSes as the ground truth for
generating the reward. The hyperparameter β is set to −0.1
to select the action with the lower inference fee cost. The
remaining hyperparameters remain unchanged from SkyML.
6) SkyML-P: In this approach, we train the RL agent using
proximal policy optimization (PPO) [47], a classical on-policy
RL algorithm that is worth comparing. 7) SkyML-T: This
method involves training the RL agent using the twin delayed
deep deterministic policy gradient (TD3) algorithm [38]. TD3
is a classical algorithm for training deterministic policies, and
comparing it to our approach can highlight the advantages
of the maximum entropy property of the SAC algorithm.
8) UPB: To increase the mAP while minimizing the cost,
we utilize the measurement data to identify and record the
MLaaS combination with the highest mAP and the minimal
fee for each input. The voting method and ablation strategy
are affirmative and WBF. The overall result from this baseline
serves as the upper bound for SkyML-OF.

Evaluation Metrics. We employ the following metrics to
evaluate the inference quality: 1) cost ce: the average inference
fee in a test episode, measured in units of 10−3 USD. 2)
AP50: the average precision of predictions achieved at a

2https://github.com/ShuzhaoXie/Armol
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Fig. 5: Training process of SAC, PPO, and TD3. left Y: AP50

of a test episode. right Y: average cost of a test episode.
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Fig. 6: Training process of SkyML-ON and SkyML-OF. “w/
gt”: SkyML-OF; “w/o gt”: SkyML-ON.

50% IoU threshold. We opt for AP50 over mAP to reduce
computational demands and expedite training processes. Un-
like mAP , which computes the average precision across IoU
thresholds ranging from 50% to 95% in increments of 5%,
AP50 specifically measures average precision at a 50% IoU
threshold, representing only 10% of the computation involved
in calculating mAP. Additionally, AP50 is a widely accepted
standard metric in object detection tasks. We use the percent
of reduced annotation cost (κ) to evaluate the quality of
taxonomies unification, which is given by:

κ = 1−
∑|M|
i=0 ni + nu · (nUM + nMM )

nu ·
∑|M|
i=0 ni

. (14)

nUM and nMM are the number of unmatched and mismatched
MLaaS-specific labels, respectively.

B. Performance of Provider Selection Method

To understand the performance, we have conducted ex-
periments to illustrate the effectiveness of our method, the
feasibility of online training, the scalability of our provider
selection approach, and the detection quality of SkyML.

Effectiveness of SkyML. As shown in Tab. III, SkyML-
OF achieves an equal mAP and a 67% reduction in inference
fee compared to the ENS baseline. Moreover, SkyML-OF
outperforms RAND-N, resulting in a 3.09% higher mAP and
a 41.75% reduction in inference fee. As for the training
algorithm, we observe that the mAP of SkyML on SAC
(SkyML-OF) surpasses that of other baselines while exhibiting
a lower average cost than TD3. In Fig. 5, SAC demonstrates
superior and quicker convergence than other algorithms.

Feasibility of Online Training. During online training, we
recommend utilizing the ensemble prediction of all MlaaSes
as the ground truth. Tab. III shows that the method without
ground truth reduces cost by 66% compared to all federated
predictions, with only 4.3% lower mAP. This result indicates

TABLE III: Performance of different baselines. “AWS” de-
notes the quantity of images selected from AWS in an episode,
and “AZU” and “GCP” carry analogous interpretations.

Methods mAP AP50 Cost AWS AZU GCP
RAND-1 15.75 24.49 1.000 1690 1605 1657
RAND-N 18.66 28.89 1.722 2858 2863 2809
SkyML-P 14.99 25.05 1.087 1300 2541 1543
SkyML-T 18.90 29.20 1.006 4843 114 26
ENS 21.75 34.69 3.000 4952 4952 4952
UPB 23.83 37.70 1.202 3881 1126 944
SkyML-ON 20.81 32.68 1.016 3426 683 924
SkyML-OF 21.75 34.80 1.003 2863 950 1156

TABLE IV: Performance of different simulated MLaaS.

MLaaS AP50 Cost MLaaS AP50 Cost
0 28.88 1.000 5 53.43 1.000
1 24.38 1.000 6 20.76 1.000
2 24.38 1.000 7 51.33 1.000
3 34.69 1.000 8 25.13 1.000
4 50.19 1.000 9 34.81 1.000

All 49.29 10.000 SkyML 53.44 1.002

that taking ENS as the ground truth can achieve the goal
of minimizing inference fees while approaching sub-optimal
accuracy. Furthermore, it suggests that ENS and ground truth
share similarities. The performance of the provider selection
algorithm heavily relies on reward supervision, and choosing
ENS as the supervision when there is no ground truth is
reasonable. Fig. 6 demonstrates that SkyML-ON converges
stably, although its AP50 and cost are not as good as SkyML-
OF during the training process.

Scalability on the Number of MLaaSes. To evaluate the
scalability of our approach with a larger number of MLaaSes,
we incorporate predictions from Aliyun Object Detection [48]
and simulate six additional MLaaSes. The details of simulated
MLaaSes can be found in our GitHub repository. We assign
index values MLaaS 0-9 to AWS, AZU, GCP, Aliyun, and the
simulated MLaaSes. In Tab. IV, we observe that the ensemble
predictions of the 10 MLaaSes are lower than that of MLaaS 5.
We suggest this is because MLaaS 5 has an AP50 value that is
20%-30% higher than the other MLaaSes, which indicates that
MLaaS 5 cannot generate more true positive results and only
adds to the number of false positive results in the ensemble
predictions. However, in the same table, we can see that
SkyML’s AP50 is slightly better than that of MLaaS 5, with
almost the same cost, which suggests that our algorithm can
select better combinations of MLaaSes despite the significant
variation in the AP50 values among the MLaaSes. In Fig. 7,
we demonstrate that our approach consistently converges when
using ten MLaaSes, with 1023 possible actions, achieving a
balance between AP50 and cost.

Scalability on Other Scenarios. To evaluate the scala-
bility of different scenarios, we apply SkyML to the spo-
ken command recognition services. Compared to the object
detection service, the spoken command recognition service
is a classification task, with the added complexity of the
pricing varying among different cloud services. Specifically,
we evaluate SkyML on the AudioMNIST dataset [49], which
consists of 30000 audio samples of spoken digits (0-9) of 60
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TABLE V: Results of the spoken command recognition task.
Metrics Google IBM MS RND-1 RND-N ENS UPB SkyML
Acc. (%) 88.48 98.28 98.62 94.53 91.13 98.81 99.73 98.83
Cost (10−3) 6.00 2.50 4.10 4.20 6.33 12.59 2.53 2.86
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Fig. 7: With 10 available MLaaS providers (1023 actions), the
mAP@50 and the cost still converge stably.

different speakers. To obtain the corresponding cloud service
predictions of AudioMNIST, we use the measurement results
from [16], including the recognition results from Google [27],
IBM [50], and Microsoft (MS) [26]. The price and accuracy
of these providers are listed in Tab. V, where we use the data
collected on March 29, 2020.

To apply SkyML to spoken command recognition services,
we have made the following modifications for each part. In the
provider selection part, we use the STT-En-Fast-Conformer-
CTC-Large checkpoint from NeMo [51] to extract the feature
vector of each audio and employ the function specified in Eq. 7
to evaluate the reward. In the taxonomy unification part, since
these cloud services only return a single word to represent
0 and 9, we only need to specially annotate the recognition
results that do not belong to the range of 0-9 to facilitate
reward calculation. As for the ensemble part, we choose the
category with the maximum votes; in the event of a tie, we
choose the category with the highest accumulated confidence.
We list the accuracy and the average cost of multiple baselines
in Tab. V. The evaluation outcomes evince that SkyML attains
a comparable level of accuracy to ENS while concurrently
effecting a cost reduction of 77%.

User Study for Detection Quality. To further understand
the detection quality of SkyML, we perform a user study
involving 25 AI experts from multiple areas, including multi-
media, computer vision, and reinforcement learning. We ask
these AI experts to compare the detection quality of our
methods against the upper bound of multi-MLaaSes. Specifi-
cally, we randomly choose 500 detection results in UPB and
SkyML baselines. Then we visualized them onto the images
and combined images as multiple <SkyML, UPB> pairs. We
also randomly shuffled the order of pairs between SkyML
and UPB to avoid influencing user choices. After that, we
separate these pairs into 10 forms, each containing 50 choice
questions. A question contains an image pair and has three
options: “Better”, “Similar”, and “Worse”. Users were asked
to vote “Better” if they felt the first detection results were
better than the second one, and so on. As every expert fills
2 forms, we finally get 2500 votes, and one question gets 5
votes.

To get the final results, we have to ensemble the 5 votes.
We consider the option with the highest count as the final

TABLE VI: Labels that hard be assigned to user label space.

Provider Unmatched Labels
AWS tablet computer, desk, bulldozer

AZU bathroom, alpaca/llama, amphibious vehicle, orchard
apple tree, microphone, antelope, cart

GCP traffic sign, flower

AWS-rugby ball

COCO-frisbee

AZU-flower

COCO-bird

AWS/GCP-
microphone

COCO-remote

GCP-cheetah

COCO-cat

COCO-broccoli

GCP-flower

COCO-horse

GCP-cart

COCO-cow

AWS-antelope

COCO-pizza

GCP-baked goods

Fig. 8: Examples of mismatched MLaaS-specific labels.

result. Suppose the distribution of these 5 votes presents
a split of 2:2:1, meaning two options are tied with two
votes each. In that case, we utilize the following rules to
determine the final vote: 1) If there are two “Better” votes
and two “Similar” votes, then the final result is “Better”;
conversely, if there are two “Worse” votes and two “Similar”
votes, then the final result is “Worse”. 2) If each of the two
images receives two “Better” votes, the final option would be
“Similar”. Final results reveal that 83.2% of the results of our
method are recognized as better or similar to the upper bound
baseline. Moreover, we find that 44 of 500 detection results
are recognized to be better than the upper bound baseline.
Consequently, relying solely on the accuracy metric to select
the upper bound may not yield the best results for users.

C. Performance of Taxonomy Unification

Among 358 MLaaS-specific labels mentioned in Tab. I, 12
of which cannot be classified into user-defined label space.
By carefully skimming auto-generated mappings between user
labels and MLaaS labels. we observe that 16 labels are
misassigned. Based on the Eq. 14, our approach reduces this
cost by 90.9%. The 12 unmatched labels are listed in Tab. VI.
This result is due to predictions for these categories having
no intersection with ground truths. From our perspective,
manually merging these 12 categories into user label space
would be better.

Dive into Misassigned Labels. To provide more insights,
we divide these mismatched label pairs into 4 categories: 1)
Inclusion. This correspondence is a subordinate relationship,
e.g., A belongs to B. As shown in the left top of Fig. 8,
the GCP-baked goods are assigned to the COCO-pizza, and
the GCP-flower is correspondence to COCO-broccoli. Both
labels are justified, and there is no one right or wrong. We
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Fig. 9: Ablation analysis of β. We collect the best mAP of the
test episode and its corresponding cost for each β value.

can observe that GCP and AZU tend to provide a more
universal label. 2) Attention. The reason for this error is that
the annotators pay different attention. In the right top of Fig. 8,
the annotators of the GCP model focus on labeling the car in
a cart, while COCO focuses on labeling the horse in a cart. In
addition, AWS tries to label the back of the animal with horns
as “Antelope”, while COCO will label it as “Cow”. 3) Error-
prone. As shown in the left bottom of Fig. 8, a professional
labeler cannot tell which category the boxed object belongs
to. 4) Wrong. The right bottom of Fig. 8 persents this type.

The AP that represents the detection accuracy of one
category is the area under the precision-recall curve. We could
get larger recall values if we exchange roles of MLaaS-
returned predictions and user-defined ground truth, leading
to a larger AP value. This trick might be helpful if the
developer or user wants to import a threshold to enable further
restrictions on mappings between user-defined and MLaaS-
specific categories.

D. Ablation Study

Choice of Different Baselines. On the right side of Tab. III,
we collect the choice of test images under different provider
selection approaches. We find that the Choice of ARM-T is
so unbalanced that AWS got most of the selections, which
indicates that the TD3 algorithm is too easy to converge and
thus cannot help the model learn the advantages of AZU and
GCP. Moreover, compared to UPB, we observe that the sum of
Choice of SkyML-OF and SkyML-ON is unexpectedly less,
demonstrating that we should decrease the cost weight in the
reward. Therefore, to understand the effect of cost weight
(β) for the whole model, we evaluate its sensitivity in the
following subsection.

Sensitivity of β. As shown in Fig. 9, choosing the value
between −1.0 and 0.5 for beta is better. Moreover, we reveal
the constraint ability of β. On the one hand, when β goes
down, the mAP does not reduce too much, but the cost
approaches the lower bound of 1.0. As the algorithm tends to
select the most accurate one when the budget is low, the above
phenomenon shows that the prediction of the right MLaaS
is almost the same as the most precise result that multiple
MLaaSes can achieve. On the other hand, when β goes up, the
mAP shrinks suddenly even though more budgets are provided.
The reason is that the weight of the cost in the reward function
overrides the accuracy, resulting in higher rewards for some
input models by simply picking more cloud services.

Sensitivity of τ . In Fig. 10, we count the number of
unmatched and mismatched labels under different τ values. As
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Fig. 10: Ablation analysis of τ . We count the unmatched and
mismatched labels under different τ values.

TABLE VII: κ value under different τ values.

τ 0.2 0.3 0.4 0.5 0.6 0.7 0.8
κ (%) 88.69 89.53 89.53 90.92 90.37 90.64 89.25

the value of τ increases, the number of unmatched labels in-
creases while the number of mismatched labels decreases. This
is intuitive because τ reflects the strictness of the bounding box
matching. The larger the τ value, the stricter the box matching,
and the lower the likelihood of finding a user label to match
the unmatched MLaaS-specific label. Since the number of
unmatched and mismatched labels affects the annotation cost,
we further calculate the corresponding κ values. In Tab. VII,
the κ are generally stable, which indicates that the predictions
of multiple MLaaSes are accurate, and the overlapping ratio
(IoU) of the matched bounding boxes is high, ensuring a stable
result across different τ values. When τ is between 0.5-0.7,
the κ value reaches a small peak. Hence, by adjusting τ , we
can balance the error rate and unmatched rate, i.e., minimizing
the sum of these two rates.

VI. RELATED WORK

A. Measurements Study for MLaaS

Previous research has focused on measuring the inference
accuracy and latency of ML models [12], [13]. However, these
studies primarily examined user-known models rather than
confidential ML services. Furthermore, Yao et al. [14] aimed to
measure ML training platforms instead of inference services.
Liu et al. [15] conducted a measurement study on older ML
services, which were limited to decision trees, SVMs, and
multi-layer fully connected neural networks. These findings
differ significantly from the next-generation ML services cur-
rently being promoted, which prioritize models that are trans-
parent to users and are focused on deep learning. Although
HAPI [16] established a response dataset of ML inference
services, it does not measure the latency of ML inference
services or the object detection services. Our measurement
study has addressed the aforementioned gaps.

B. Machine Learning Inference Services

Prior work on edge-cloud collaborated inference services
[52] spans on robustness [53] and pricing mechanisms [54].
Recently, FrugalML [10] studies ML API calling strategies for
single-label classification. Further, FrugalMCT [11] adaptively
selects the APIs to use for different data in an online fashion
while respecting the user’s budget. The core weakness of
FrugalMCT is that it requires the prediction of a base service



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 12

to decide whether to request a new service, but the base
service may not belong to the best MLaaS combination.
However, SkyML does not need to request any underlying
services in advance and thus can guarantee the choice of the
best MLaaS combination. Besides, SkyML could handle more
complicated outputs and employ RL to solve the provider
selection problem. One API designed for multi-label image
classification might generate the following output: (person,
0.8), (car, 0.7). This indicates that the image contains a
person with a confidence score of 0.8 and a car with a
confidence score of 0.7. The object detection API returns
more complicated predictions that contain boxes to describe
the locations of objects, i.e., {(person, 0.8, [34, 101, 10, 60]),
(car, 0.7, [78, 195, 74, 72])}. The complex prediction of the
object detection service makes FrugalMCT inappropriate for
it. Further, FrugalMCT has not considered different vocabulary
from different providers, but our framework has noticed and
solved this problem. Finally, FrugalMCT selects at most two
services for each input as its algorithm aims to select only one
extra service to enhance the accuracy of the result of the base
service.

C. Cloud Federation

Previous studies on cloud federation involve combining
cloud services from various providers into a unified pool,
allowing for the migration of features-resources, resource
redundancy, and complementary resources [55]. These efforts
can potentially decrease costs by partially outsourcing to
regions with higher cost-efficiency [56]. Nonetheless, prior
cloud federation studies concentrated on the integration of
explicit resources like storage and compute resources, to opti-
mize expense and stability. In contrast, our approach involves
integrating implicit resources, specifically the training data
and models underlying commercial ML inference services, to
attain optimal analytic performance. Recently, sky computing
[6], which is an alternative term for cloud federation, has
also gained significant traction. Skyplane [8] enhances inter-
region data transfer speeds by utilizing indirect paths at the
application layer for routing data. SkyPilot [7] enables the easy
and cost-effective execution of ML workloads on any cloud
platform. Our work complements SkyPilot since it takes into
account the joint utilization of multiple ML inference services,
which is not addressed by SkyPilot.

D. User Experience in Multicloud Inference

User experience is a topic that never fades in multimedia
[57]. Here, we focus on the user experience of multi-model in-
ference. The primary objective of training on multiple datasets
is to achieve dataset unification, which entails merging differ-
ent semantic concepts. This task is analogous to the unification
of MLaaS-specific labels. MSeg [39] manually harmonizes the
taxonomies of 7 semantic segmentation datasets and employs
Amazon Mechanical Turk to resolve inconsistent annotations
between datasets. Wang et al. [58] train a partitioned model
on multiple datasets, leveraging diverse sources of supervision
to attain robustness. Universal-RCNN [59] models the class
relations with an inter-dataset attention module, but it may

produce duplicated outputs for objects present in more than
one dataset. UniDet [41] enhances the aforementioned works
through the unification of visual concepts within a single label
space, yielding a singular, consistent model that does not
necessitate knowledge of the test domain. In contrast, Zhao
et al. [40] manually merge taxonomies and subsequently train
with cross-dataset pseudo-labels generated by dataset-specific
models, which serves as a complementary approach to UniDet.
ScaleDet [60] leverage knowledge from pre-trained models,
such as CLIP, to train a visual-language object detector. These
works aim to merge dataset-specific taxonomies into a bigger
and more accurate label space, while we want to merge
MLaaS-specific taxonomies into user-satisfied label space.

E. Combinatorial Reinforcement Learning

Discrete, high-dimensional action spaces are commonly
found in various applications [61], such as natural language
processing [62], text-based applications [63], and vehicle rout-
ing [36]. However, they present a challenge for standard RL
algorithms [64] due to the impracticability of enumerating the
action space for selecting the next action from a given state.
Recent approaches to address this challenge involve choosing
the optimal action from a random sample [62], approximating
the discrete action space with a continuous one [34], [35],
training an additional ML model to eliminate sub-optimal
actions [63], and formulating the action selection problem as
a mixed-integer program for each state [36]. Zhong et al. [65]
apply the Wolpertinger policy to the edge cache problem, but it
merely serves as an application and does not contribute to the
policy itself. In our provider selection approach, we embed the
continuous action into the binary action space by associating it
with the nearest neighbor. To enhance exploration, we utilize
the SAC algorithm for training.

VII. DISCUSSION

This section examines the security and scalability con-
straints within our research and the broader significance of
our results, offering insights into areas for future investigation
and practical applications.

Security and Privacy. Data security and privacy are crucial
considerations in cloud services. There is potential for the
misuse of user data. Viable solutions encompass anonymiza-
tion techniques that do not compromise the final identification
results, such as locally identifying and masking sensitive in-
formation. Alternatively, model service providers can partition
their models, deploying a portion within user-end applications
and retaining another portion in the cloud. During each in-
ference process, intermediate results are computed using the
user-end model and transmitted to the cloud for prediction.

Potential Limitations. Our approach has potential limita-
tions: 1) Model bias: In the provider selection process, we
use a pre-trained lightweight model to extract input features.
The biases embedded in this lightweight model can influence
the whole selection pipeline. 2) Task-oriented: Whenever
transitioning to a new task, we must research the methods
corresponding to each module again. For instance, in the



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, X XXXX 13

ensemble part, different tasks yield different outputs, necessi-
tating research into suitable ensemble algorithms. 3) Metrics:
We utilize the established mAP metric to quantify the accuracy
of object detection services. However, some MLaaSes, such
as LLM services [9], lack a mature quantification metric.
Precisely quantifying whether a service aligns with a user’s
preferences is crucial for achieving MLaaS federation.

Scalability across Various Scenarios. The scalability of
our approach may fail in the following scenarios: 1) Cloud
services capable of handling various tasks. Although we have
conducted experiments on the spoken command classification
task, applying SkyML to large language model (LLM) services
still presents challenges. LLM services excel at diverse tasks,
making it challenging to devise an unbiased metric for eval-
uating their performance and pricing. Further assessment of
whether LLM services adequately meet user demands neces-
sitates additional resources. Moreover, aggregating generated
texts from multiple LLMs into a precise answer poses an extra
challenge. 2) Fluctuating numbers of cloud services. While we
have validated the provider selection method’s performance
across ten cloud services, our approach cannot accommodate
dynamic changes in the number of cloud services, as the
model’s capacity to handle cloud service numbers is fixed.
If additional cloud services are introduced, this would entail
adding an additional output dimension to the action function
in the reinforcement learning model. Our approach cannot
dynamically adjust the reinforcement learning model based on
changes in the number of cloud services.

Broader Implications. Recently, many search engines have
incorporated LLM into their search processes. For instance,
Bing [66] has integrated Copilot into its search results, while
Perplexity [67] employs LLM to consolidate search outcomes.
Similar to vision models from cloud providers with various
capabilities, we envision that other emerging models, like
LLM in MLaaSes, could also demonstrate such diversity. Our
SkyML design can further exploit this to help users derive a
more credible answer through federation.

VIII. CONCLUSION

In this paper, we propose SkyML, a novel broker for uti-
lizing multiple MLaaSes. We begin by conducting a measure-
ment study to identify two key challenges for SkyML: 1) How
can the right MLaaS combination be selected to maximize
accuracy while minimizing cost? 2) How can the various
MLaaS-specific taxonomies be automatically unified and the
results are efficiently ensembled? To tackle the first problem,
we propose a combinatorial RL approach and represent the
huge discrete space with continuous action. For the second
problem, we propose a taxonomy unification method based
on similarity learned from the data. Our approach yields
significant cost savings, reducing inference fees by 67% and
annotation costs by 90%, all without compromising analytic
accuracy.
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