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Abstract—Automation of pulmonary disease identification has
been a long-standing area of research and gained increased
attention after the COVID-19 pandemic. However, existing
respiratory sound classification algorithms exhibit significant
limitations, including suboptimal performance, insufficient input
robustness, and inadequate alignment with clinical evaluation
metrics, thereby hindering their practical implementation. To
address these limitations, we introduce PulmoScan, a practical
pulmonary disease pre-screening system. PulmoScan comprises
three fundamental modules: a Respiratory Sound Quality Validator
that ensures the robustness of input data, a Runtime Decision
Booster that improves performance and adapting to variating
evaluation metrics, and a Symptom Enhancement Diagnoser that
augments respiratory sound classification with comprehensive
disease pre-screening capabilities. Beyond its primary function,
PulmoScan exemplifies a methodological framework for trans-
lating theoretically limited algorithms into viable clinical appli-
cations, demonstrating essential considerations and procedural
adaptations for real-world implementation.

Index Terms—Application for Healthcare, Application of Large
Language Models, Pulmonary Disease Pre-Screening, Runtime
Category Decision Algorithm, Out-of-Distribution Detection

I. INTRODUCTION

Respiratory diseases represent a leading cause of global
mortality [1], with early diagnosis playing a pivotal role in
mitigating disease transmission [2]. Stethoscope auscultation
is a cost-effective and non-invasive method of diagnosing
pulmonary diseases, but it presents challenges: it requires
trained professionals and can lead to subjective and variable
interpretations. These problems are exacerbated in resources-
limited settings, especially during pandemics such as COVID-
19, where the shortage of medical experts further complicates
the timely and accurate diagnosis.

There has been extensive research [2]–[15] on automated
respiratory sound recognition, but these efforts are still far
from being used as practical disease diagnosis or screening
systems, primarily due to the following limitation:
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a) Lack of Input Robustness: In screening systems,
users typically lack expertise in proper stethoscope operation,
potentially generating suboptimal respiratory sound recordings
that compromise diagnostic accuracy. Consequently, the de-
tection of low-quality audio signals becomes imperative for
reliable diagnosis. Thus, recognizing the low-quality audio is
necessary.

b) Insufficient Input Modal Dimensions: Exclusive re-
liance on acoustic features such as crackles and wheezes in
abnormal respiratory sounds proves inadequate for compre-
hensive diagnosis. Clinical practice demonstrates that physi-
cians integrate multiple symptomatic indicators for thorough
assessment. Therefore, a robust diagnostic model should in-
corporate both the patient’s symptomatic profile, emulating
clinical judgment, and respiratory sound analysis results to
ensure comprehensive evaluation.

c) Inaccurate Metric Evaluation & Inadaptability to
Real-World Changes: Most respiratory sound classification
algorithms rely on fixed evaluation metrics, such as the score
in ICBHI [16]. However, this approach is insufficient for
practical applications. In real-world scenarios, the relative
importance of sensitivity (Se) and specificity (Sp) varies.
Sometimes, accurately identifying abnormal cases is more
critical than correctly classifying normal ones, while in other
contexts it is essential to avoid false positives. The relative
importance of diagnostic factors can be modulated by multiple
parameters, including resource constraints, transmission dy-
namics, and other contextual variables. Existing algorithms do
not perform well in Se, limiting their practical implementation.
Furthermore, as conditions evolve, this relative importance can
change, making models optimized for specific metrics less
effective over time.

To address the aforementioned challenges, we design a
robust pulmonary disease screening system that can handle
multimodal input, comprising three distinct modules:

1. Respiratory Sound Quality Validator. This validator de-
termines whether the recorded audio qualifies as a test sample
for the detection algorithm. We developed a manifold adapter
to take advantage of CLAP’s [17] general knowledge for the
qualification check. Through training the adapter on a limited
dataset of representative qualified and unqualified specimens



Fig. 1: The Architecture of PulmoScan. PulmoScan classifies individuals into five risk categories. We design a Respiratory
Sound Validator and a Runtime Decision Booster to overcome the drawbacks of current respiratory sound classification methods.
Besides, we also designs a Symptom Enhancement Diagnoser, which uses patients’ other symptoms to assist in evaluating
pulmonary disease risk.

utilizing CLAP embeddings, this methodology achieves 95%
precision within the established domain.

2. Symptom Enhancement Diagnoser. We select 11 addi-
tional features to enhance the final diagnosis. This Symptom
Enhancement Diagnoser consists of an Auto Symptom Col-
lector and a Risk Evaluator. It is worth noting that both the
symptom inquiry and vector extraction in our system are fully
automated by Large Language Models (LLM), significantly
reducing the labor costs involved in the prescreening process.

3. Runtime Decision Booster. By default, the category with
the highest probability is selected as the final decision. How-
ever, in disease screening contexts, false negative outcomes
(misclassifying pathological cases as normal) incur substan-
tially higher costs than false positive outcomes (misclassifying
normal cases as pathological), with cost implications varying
across geographical regions. To address this, we propose a
Runtime Decision Booster that includes a Performance Tracker
and an Expectation Maximization Category Decision Algo-
rithm (EM-CDA). The Performance Tracker logs prediction-
truth pairs after a delay, enabling real-time performance moni-
toring, while the EM-CDA selects the category that maximizes
expected gain based on a customizable metric, which can
be adjusted to reflect the relative costs of false positives
and false negatives. This approach is non-intrusive to the
model’s training, enabling compatibility with any probabilistic
classifier while optimizing decision boundaries for context-
specific screening requirements, thus enhancing classification
robustness and minimizing critical errors.

II. SYSTEM DESIGN AND ARCHITECTURE

PulmoScan, illustrated in Fig. 1. , classifies individuals into
five categories: High Risk of Pneumonia, Risk of Bronchitis,

(a) Image Scenario (b) Respiratory Sound Scenario

Fig. 3: The Confidence Distribution using Confidence Scaling
method on ID and OOD data. We cannot find a proper
detection threshold in the Respiratory Sound Classification
Scenario.

Risk of URI, Other Risks, and No Risk. The classification is
based on the detection of respiratory sounds and observable
symptoms. The system comprises three key components: the
Respiratory Sound Quality Validator (Section II-A), the Symp-
tom Enhancement Diagnoser (Section II-B), and the Runtime
Decision Booster (Section II-C), which together ensure accu-
rate and context-aware disease screening.

A. Respiratory Sound Quality Validator

We designed a validator to ensure that the recorded audio
is a qualified respiratory sound. Initial attempts using Out-
of-Distribution (OOD) approaches, such as confidence-based
methods from [22] (referenced in [25]), proved ineffective. As
shown in TABLE I and Fig. 3, confidence scaling resulted in a
detection error of 0.4969 on the best threshold, nearly equiv-
alent to random guessing. The confidence score distributions
for OOD and in-distribution (ID) samples were also nearly



TABLE I: Confidence Method Doesn’t Work in Respiratory Scenario.

Scenario Image Respiratory Sound

Dataset
80% CIFAR-10 for training 80% Private-LSb for training

20% CIFAR-10 [18] as a ID dataset for testing 20% Private-LS as a ID dataset for testing
TinyImageNeta as an OOD dataset for testing ESC50 [19] as an OOD dataset for testing

Method Used baseline [20] ODIN [21] confidence [22] conf. scaling [22] conf. scaling [22]
TPR95↓ 0.4073 0.2126 0.1784 0.1645 0.9479

Detection Error↓ 0.1195 0.1029 0.0968 0.0919 0.4969
Best Threshold 0.9921 0.1007 0.3390 0.4586 0.4449

AUROC↑ 0.9375 0.9569 0.9706 0.9734 0.4369
AUROC IN↑ 0.9461 0.9554 0.9737 0.9760 0.8124

AUROC OUT↑ 0.9224 0.9566 0.9694 0.9728 0.1361
a TinyImageNet is a subset of ImageNet [23], which contains 10000 images from 200 categories. The images will be downsampled to the
size of 32 × 32 keeping the same to CIFAR’s size.
b A Private Respiratory Sound Dataset collected by us.

TABLE II: The Performance of Manifold Adapter

Sp Se

Train
LungSound 20% Private-LS

98.25 94.03ICBHI [16]

Non-LungSound 20% Private-NLSc

Test
LungSound 80% Private-LS

98.66 53.11ICBHI

Non-LungSound AudioSet [24]
c A Private Environmental Sound Dataset collected by us.

identical, making threshold-based OOD detection infeasible.
This failure is likely due to the low accuracy of respiratory
sound classification algorithms and limited data diversity.

Inspired by ZOC [26] and CLIPN [27], we developed a
novel approach by affixing a manifold adapter to CLAP [17].
Trained on a small set of samples from each class, the manifold
adapter accurately determines whether a sound is a proper
respiratory sound and demonstrates OOD detection capability.
During training, CLAP’s weights remain fixed, enabling rapid
retraining of the Manifold Adapter with updated deployment
data.

We test the performance of this manifold adapter architec-
ture, as shown in TABLE II. It turns out that the manifold
adapter can achieve a decent classified accuracy with only
20% data as the train dataset. Even when facing samples from
classes never occurred in training, it still shows 53.11% Se
and 98.66% Sp.

B. Symptom Enhancement Diagnoser

We use an Auto Symptom Collector to collect additional
obvious symptom information from individuals, combining
the collected 11-dimensional symptom vector with respira-
tory sound detection results. This combined data is fed into
a downstream classifier for disease risk classification. The
system uses prompts to enable the LLM (GPT-4o) to ac-
tively inquire about symptoms and outputs an end marker
[collect information over] once all information is
gathered, terminating the conversation. The Conversation In-
formation Extractor then extracts the gathered information
using another prompt.

Prompt for Initializing Dialogue: You are a pneumonia
screening consultation expert, and you need to assume that
I am a patient coming to you for a consultation. You should
collect the following information from me through a conver-
sational approach: whether I have a fever, whether I have a
cough, if there is a fever, whether it has lasted for a long time,
if there is a cough, whether it has persisted for more than
8 days, and whether symptoms such as sputum production,
shortness of breath, facial cyanosis, tachypnea, retractions,
nasal flaring, runny nose, or nasal obstruction have occurred.
Please ensure that each question is not too long and guide
the patient to share relevant information in a conversational
manner. Once you have gathered all the necessary information,
provide a closing remark [collect information over] and then
exit the role-playing scenario.

Prompt for Extracting Information: Now, please orga-
nize your response according to the following output format,
with no extra output:{’fever’: True, ’cough’: True, ’sputum
production’: True, ’shortness of breath’: True, ’cough > 8
days’: True, ’shortness of breath’: True, ’facial cyanosis’:
True, ’tachypnea’: True, ’retractions’: True, ’nasal flaring’:
True, ’runny nose’: True, ’nasal obstruction’: True}

C. Runtime Decision Booster

Given a probability vector from a probabilistic model, the
category decision is typically made using argmax

i
prob[i],

where prob denotes a probability vector. Despite the default
Category Decision Algorithm (CDA) maximizing overall ex-
pected accuracy, it may not always be the optimal solution, as
accuracy is not always the primary concern. When using an
ICBHI-like metric (Sp+ r×Se)/(1+ r), where r represents
the importance of Se, this method may not perform optimally
under varying r.

We employ a Performance Tracker to log delayed
prediction− truth pairs and utilize EM-CDA (Algorithm 1)
to improve performance on specific metrics. Testing the SOTA
ICBHI algorithm [5] with EM-CDA (Fig. 4, with a delay of 8
samples), we observed a metric improvement that exceeded
6% when Se’s importance was critical. This improvement
grows as the importance of Se increases.

However, when Se’s importance is around 1, our method
may reduce the final evaluation score due to two factors:



Algorithm 1 EM-CDA
(Expectation Maximization Category Decision Algorithm)

1: procedure EM CDA( prob[], past[],metric )
2: prob[] is the probability vector output by upstream model;

past[] is a vector consists of pairs of category predicted
and the ground truth where each pair represents a test
sample detected before; metric is a given function that
takes a vector like past[] as parameter and outputs
corresponding metric value.

3: Declare an Array named Expectation[]
4: for i = 0 to len(prob[])− 1 do
5: p← prob[i]
6: m← metric(past[])
7: mafter ← metric(past[] + < i, i >)
8: expectation vec[i]← p ∗ (mafter −m)
9: for j = 0 to len(prob[])− 1 do

10: if i == j then
11: pass
12: end if
13: mafter ← metric(past[] + < i, j >)
14: δm ← P(truth = j|truth ̸= i)∗ (mafter−m)
15: Add (1− p) ∗ δm to Expectation[i]
16: end for
17: end for
18: return argmax

i
Expectation[i]

19: end procedure

(1) EM-CDA relies on potentially inaccurate class probability
vectors, and (2) selecting the class with the highest expected
gain may deviate from actual outcomes in finite testing.
Nonetheless, in our screening scenario, where Se’s importance
exceeds 1, the algorithm’s benefits outweigh these biases.

III. RELATED WORKS

A. Out-of-Distribution Detection

In deep learning, the closed-world assumption [28] assumes
that all test classes are observed during training. However,
in our abnormal respiratory sound screening scenario, the
inexperience of operators using stethoscopes breaks this as-
sumption, requiring a module to verify if the input audio is
a respiratory sound. For Out-of-Distribution (OOD) detection,
a common approach is to use maximum softmax probability
(MSP) as a threshold [20], with OOD samples expected to
have lower MSP values than in-distribution (ID) samples.
ODIN [21] enhances this method by applying temperature
scaling and input perturbations to better distinguish between
ID and OOD softmax score distributions. Other methods
propose training models to output confidence scores [22], [29],
or use ID-ness threshold-based approach like energy-based
[30] and gradient-based [31] methods and so on. Additionally,
generating synthetic OOD samples and adding them to the
training set [32] is also a way to realize OOD detection. And
there are also some zero-shot approaches [26], [27] using

Fig. 4: Bonus gained on given importance of Se by using
EM-CDA. Score = (Sp+ r × Se)/(1 + r), where r denotes
the importance of Se. This experiment, conducted with Patch-
MixCL+AST [5] on the ICBHI [16] official train-test split,
allows EM-CDA to receive feedback with an 8-sample delay.
In scenarios where Se’s importance is not around 1, EM-CDA
significantly boosts performance.

well-trained LLMs like CLIP or CLAP [17], [33] showing
promising potential.

B. Respiratory Sound Classification

The detection of abnormal respiratory sounds has been a
long-standing research focus. In general, there are three main
categories of methods that can accomplish this task. The first
method is using the nolinear filter [13], or a tunable Q-factor
wavelet transform [9] to try seperating crackle signal from the
original respiratory sound. The second is the feature engineer-
ing approach. This kind of approach mainly focuses on finding
better features, such as the spectral features [11], [12], the
eigenvalue of singular spectrum analysis [34], MFCC [14], S-
transform spectrogram [10] and so on. Third, latest researches
tried deep learning methods, which take a spectrogram as the
input and use a deep neural network to determine if it is
an abnormal respiratory sound sample [2], [5]. These efforts
primarily focus on overcoming the issue of insufficient data
in respiratory sound datasets by employing data augmentation
techniques or improving learning methods.

IV. CONCLUSION

This paper introduces PulmoScan, a system that bridges the
gap between respiratory sound detection algorithms and prac-
tical pulmonary disease prescreening. Our key contributions
lie in

• An accurate and cost-effective OOD detection module.
• An automated approach to collect individual data using

large language models.
• A non-intrusive category decision algorithm that can

make the model perform better under any given metric
functions.

PulmoScan provides a robust and efficient solution for the
prescreening of lung diseases. This system can also serve
as a practical demonstration for other real-world healthcare
scenarios.



REFERENCES

[1] World Health Organization. The global impact of respiratory diseases
(2nd edition). Forum of International Respiratory Societies (FIRS),
2017.

[2] Siddhartha Gairola, Francis Tom, Nipun Kwatra, and Mohit Jain.
Respirenet: A deep neural network for accurately detecting abnormal
lung sounds in limited data setting. In 2021 43rd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society
(EMBC), pages 527–530. IEEE, 2021.

[3] Sandra Reichert, Raymond Gass, Christian Brandt, and Emmanuel
Andrès. Analysis of respiratory sounds: State of the art. Clini-
cal medicine. Circulatory, respiratory and pulmonary medicine, page
CCRPM.S530, Jan 2008.

[4] Renard Xaviero Adhi Pramono, Stuart Bowyer, and Esther Rodriguez-
Villegas. Automatic adventitious respiratory sound analysis: A system-
atic review. PLOS ONE, page e0177926, May 2017.

[5] Sangmin Bae, June-Woo Kim, Won-Yang Cho, Hyerim Baek, Soyoun
Son, Byungjo Lee, Changwan Ha, Kyongpil Tae, Sungnyun Kim, and
Seyoung Yun. Patch-mix contrastive learning with audio spectrogram
transformer on respiratory sound classification. In 24th International
Speech Communication Association, Interspeech 2023, pages 5436–
5440. International Speech Communication Association, 2023.

[6] Naoki Asatani, Tohru Kamiya, Shingo Mabu, and Shoji Kido. Clas-
sification of respiratory sounds using improved convolutional recurrent
neural network. Computers & Electrical Engineering, 94:107367, 2021.

[7] Ivan W Selesnick. Wavelet transform with tunable q-factor. IEEE
transactions on signal processing, 59(8):3560–3575, 2011.

[8] Mohammed Bahoura. Pattern recognition methods applied to respiratory
sounds classification into normal and wheeze classes. Computers in
biology and medicine, 39(9):824–843, 2009.

[9] Sezer Ulukaya, Gorkem Serbes, and Yasemin P Kahya. Resonance based
separation and energy based classification of lung sounds using tunable
wavelet transform. Computers in Biology and Medicine, 131:104288,
2021.

[10] Rajkumar Palaniappan, Kenneth Sundaraj, Sebastian Sundaraj, N Huli-
raj, and SS Revadi. A telemedicine tool to detect pulmonary pathology
using computerized pulmonary acoustic signal analysis. Applied Soft
Computing, 37:952–959, 2015.

[11] Syed Osama Maruf, M Usama Azhar, Sajid Gul Khawaja, and M Usman
Akram. Crackle separation and classification from normal respiratory
sounds using gaussian mixture model. In 2015 IEEE 10th International
Conference on Industrial and Information Systems (ICIIS), pages 267–
271. IEEE, 2015.

[12] Plamen Bokov, Bruno Mahut, Patrice Flaud, and Christophe Delclaux.
Wheezing recognition algorithm using recordings of respiratory sounds
at the mouth in a pediatric population. Computers in biology and
medicine, 70:40–50, 2016.

[13] Mariko Ono, Kaoru Arakawa, Masashi Mori, Tsuneaki Sugimoto, and
Hiroshi Harashima. Separation of fine crackles from vesicular sounds by
a nonlinear digital filter. IEEE transactions on biomedical engineering,
36(2):286–291, 1989.

[14] Bor-Shing Lin and Bor-Shyh Lin. Automatic wheezing detection using
speech recognition technique. Journal of Medical and Biological
Engineering, 36:545–554, 2016.

[15] Sonia Charleston-Villalobos, Ramón González-Camarena, Georgina
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