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Abstract
Recent advances in 3D Gaussian Splatting (3DGS) have greatly
improved 3D reconstruction. However, its substantial data size
poses a significant challenge for transmission and storage. While
many compression techniques have been proposed, they fail to
efficiently adapt to fluctuating network bandwidth, leading to re-
source wastage. We address this issue from the perspective of size-
aware compression, where we aim to compress 3DGS to a desired
size by quickly searching for suitable hyperparameters. Through a
measurement study, we identify key hyperparameters that affect
size—namely, the reserve ratio and bit-width settings. Then, we
formulate this hyperparameter optimization problem as a mixed-
integer nonlinear programming (MINLP) problem, with the goal
of maximizing visual quality while respecting the size budget con-
straint. To solve the MINLP, we decouple this problem into two
parts: discretely sampling the reserve ratio and determining the
bit-width settings using integer linear programming (ILP). To solve
the ILP more quickly and accurately, we design a quality loss esti-
mator and a calibrated size estimator, as well as implement a CUDA
kernel. Extensive experiments on multiple 3DGS variants demon-
strate that our method achieves state-of-the-art performance in
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†Corresponding author.
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post-training compression. Furthermore, our method can achieve
comparable quality to leading training-required methods after fine-
tuning. Project page & Code: shuzhaoxie.github.io/sizegs.
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1 Introduction
In recent years, 3D Gaussian Splatting (3DGS) [24] has revolution-
ized 3D scene representation and has been widely adopted in a
variety of applications [7, 20, 28, 30, 32, 50, 56, 63, 70]. Despite
its success, 3DGS still faces limitations in transmission efficiency
due to its giant number of points and complex attributes. Though
various 3DGS compression methods have been proposed [5], they
overlook requirements arising from on-demand applications such
as volumetric video streaming [56, 66], live streaming [21], and
remote teleoperation [28]. These applications frequently encounter
fluctuating network bandwidth, leading to jitter and blurriness that
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significantly impact user experience. These inefficiencies are fur-
ther exacerbated in large-scale 3DGS scenes, which often exceed
20 megabytes (MB) even after compression. To overcome this chal-
lenge, size-aware 3DGS compression presents a promising direction.
The key idea is to compress the 3DGS to desired size by automatically
searching the suitable hyperparameter set.

Based on the way of hyperparameter configuration, current
3DGS compression methods fall into two categories. One is the
offline method [16, 39, 41, 43, 58–60], which requires manually set-
ting hyperparameters to adjust the compressed file size. Moreover,
there are a variety of hyperparameters to consider, which demands
a significant amount of human effort for adjustment. The other is
the online method [10, 27, 35, 54, 57], which selects hyperparame-
ters based on a context model and imports an extra hyperparameter
𝜆 to balance rate and bit consumption. While 𝜆 can adjust the final
size, each adjustment requires retraining the context model from
scratch, which is time-consuming. Additionally, it is difficult to pre-
dict the final size given a certain 𝜆. Therefore, existing methods are
unable to search for feasible hyperparameters under the constraint
of the size budget in a short amount of time. Given the fast speed
of recent integer programming solvers [64], we propose to achieve
fast size-aware compression via mixed integer programming.

However, searching for appropriate 3DGS compression hyper-
parameters from an optimization perspective is non-trivial. First,
3DGS compression pipeline has lots hyperparameters. Some hyper-
parameters have a significant impact on size, while others are not. It
is necessary to filter out a set of hyperparameters that significantly
influence size. Second, to formulate an integer programming model,
an explicit analytical relationship needs to be established between
size and hyperparameters, as well as between quality and hyperpa-
rameters. This model can then use existing solvers to determine the
appropriate hyperparameter settings. Finally, to fastly achieve the
accurate results, an accurate approximation function for the actual
size and acceleration techniques should be propose, which will
allow the solver determine whether a candidate hyperparameter
solution satisfies the constraints faster.

To tackle these challenges, we propose SizeGS, a codec that can
compression 3DGS to a desired file size while maximizing visual
quality. First, we summarize and analyze the pipeline of 3DGS
compression and identify the two most influential hyperparame-
ters on size: the reserve ratio 𝜏 and bit-width setting Q. Then,
we formulate the problem as a Mixed Integer Nonlinear Program-
ming (MINLP) model, where the objective is visual quality and the
constraint is size. To solve it, we decompose the MINLP into two
subproblems: one is discrete sampling for 𝜏 , and the other is Integer
Linear Programming (ILP) for Q, which can be quickly solved using
existing solvers [46]. Specifically, we perform multiple rounds of
search to find suitable hyperparameters. In each round, we sample
a value for 𝜏 , solve for Q using ILP, compute the quality. We select
the hyperparameters with the highest quality as the search result.
To ensure that the bit-width settings search aligns with the ILP
definition (i.e., both objective and constraint are linear functions
of Q), we propose using quantization loss to replace visual qual-
ity and construct a linear analytical relationship between size and
Q for accurate size estimation. To accelerate the solution process,
we implement a CUDA kernel for parallel quantization and reuse
the search results from the previous round as the solver’s search

starting point. Finally, we carefully design a three-step fine-tuning
method to improve accuracy.

In summary, our contributions are as follows: 1)We formulate
the hyperparameter search problem in 3DGS compression as a
Mixed Integer Nonlinear Programming (MINLP) model. To make
this optimization tractable, we decouple this problem into two sub-
problems: discrete sampling for the reserve ratio and Integer Linear
Programming (ILP) for bit-width setting. 2) To enable precise size
estimation, we establish an analytical linear relationship between
the bit-width setting and the resulting file size. To accelerate the ILP
solver, we utilize the attribute loss to estimate the quality loss and
implement a CUDA kernel to parallelize the quantization process.
3) Extensive experiments on multiple 3DGS variants reveal that
our method can search a set of hyperparameters to compress 3D
Gaussians to desired size in a minute and achieves SOTA perfor-
mance on offline compression. With finetuning, our method can
achieve the comparable performance as the SOTA online compres-
sion methods.

2 Preliminary and Motivation
In this section, we first introduce the the data composition of 3DGS.
Then, we summarize the general techniques of online and offline
3DGS compression methods. Finally, we identify the hyperparame-
ters that greatly influence the compressed file size.

2.1 Base Models for 3DGS Compression
3DGS [24] consists of mulitple 3D Gaussian functions. Each Gauss-
ian is characterized by a covariance matrix Σ and a center point
𝜇, which is referred to as the mean value of the Gaussian: 𝐺 (𝑥) =
𝑒−

1
2 (𝑥−𝜇)

⊤Σ−1 (𝑥−𝜇) . To maintain the positive definiteness of the
covariance matrix Σ, 3DGS decomposes Σ into a scaling matrix
S = diag(s), s ∈ R3 and a rotation matrix R: Σ = RSS⊤R⊤. The rota-
tion matrix R is parameterized by a rotation quaternion q ∈ R4. In
summary, each element of 3D Gaussians constains: (1) a 3D center
𝜇 ∈ R3; (2) a rotation quaternion q ∈ R4; (3) a scale vector s ∈ R3;
(4) a color feature defined by spherical harmonics (SH) coefficients
SH ∈ Rℎ , with ℎ = 3(𝑑 + 1)2, where 𝑑 is the harmonics degree; and
(5) an opacity logit 𝑜 ∈ R.
Scaffold-GS [36] is a variant of 3DGS, widely adopted in 3DGS
compression [10, 57]. It introduces anchor points to capture common
attributes of local 3D Gaussians. Specifically, the anchor points are
initialized from neural Gaussians by voxelizing the 3D scenes. Each
anchor point has a context feature f ∈ R32, a location x ∈ R3, a
scaling factor l ∈ R6 and 𝑘 learnable offset O ∈ R𝑘×3.
4DGS [61] models dynamic scenes as spatio-temporal 4D volumes
composed of 4D Gaussian primitives. Each 4D Gaussian consists
of (1) a 3D center 𝜇 ∈ R3; (2) a rotation quaternion q ∈ R4; (3) a
scale vector s ∈ R3; (4) a color feature defined by SH coefficients
SH ∈ Rℎ , with ℎ = 3(𝑑 + 1)2, where 𝑑 is the harmonics degree; (5)
an opacity logit 𝑜 ∈ R; (6) a time coordinate t ∈ R; (7) a time scale
component s𝑡 ∈ R; (8) a time-level rotation vector r𝑡 ∈ R4.
Summary. Elements of base 3D Gaussian models can be divided
into two components: geometry and attributes. The geometry con-
sists of the coordinates of 3DGS. The attributes consists of the other
components. For example, for ScaffoldGS, the geometry refers to
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Figure 1: The 𝜏 and bit-width greatly influence the final file
size and establish a linear relationship with the size.

the coordinates of the anchor points, and the attributes refers to
the context feature, scaling factors and learnable offsets.

2.2 Universal Pipeline of 3DGS Compression
3DGS compression pipeline consists of four steps: 1) pruning the
unimportant Gaussian points, 2) Transforming the attributes (i.e.,
quaternions) to reduce data entropy; 3) Quantizing the attributes in
a group-wise way; 4) Entropy coding the coordinates and attributes.
Pruning. Offline methods first prune the unimportant Gaussians
based on a importance score [16, 41, 59], derived from the volume
rendering function: 𝐶 =

∑
𝑖∈𝑁 𝑐𝑖𝛼𝑖

∏𝑖−1
𝑗=1 (1 − 𝛼 𝑗 ). Here, 𝑐𝑖 and 𝛼𝑖

are the density and color of this pixel, computed by a Gaussian with
covariance Σ multiplied by a per-point opacity and SH coefficients.
Based on this function, the importance score is given by:

𝐼𝑑 =
∑︁
𝑝∈P

𝛼𝑖

𝑖−1∏
𝑗=1
(1 − 𝛼 𝑗 ), (1)

P is the pixel set that is overlapped by the Gaussian 𝑔, and 𝑖 is the
rank of Gaussian𝑔 in a set of Gaussians that overlap with the pixel 𝑝 .
It uses a threshold 𝜏 to prune Gaussians, which means that it retains
the percent of 𝜏 of the sorted Gaussians. Some works [16, 59] use
volume to weight 𝐼𝑑 to obtain a more precise importance estimation,
but this improvement is negligible. Here the volume means the
product of the scale vector.
Transformation. This technique is usually employed by offline
compression method. A typical method is region-adaptive hierar-
chical transform (RAHT) [13], which is utilized by MesonGS [59]
to decompose attributes into low-frequency and high-frequency
coefficients. This step can reduce the entropy of the attributes, re-
sulting in less information loss during subsequent quantization and
leading to better entropy encoding results.
Quantization. Due to the extreme sensitivity of geometry, previ-
ous works typically quantize it to 16-bit. For attributes, previous
methods partition each channel of attributes into multiple groups.
For each group of attributes, there are currently two types of quan-
tization approaches. The first is based on traditional compression
models, where the quantization step𝑄𝑠 ∈ [0, 1] are used to convert
the float attributes into integers: 𝑥 = ⌊𝑥/𝑄𝑠 ⌉. The second approach
adopts model-based quantization, which quantize a group of at-
tributes 𝑥 with the quantization bit-width 𝑄𝑏 ∈ [1, 32] ∩ Z:

𝑥 = ⌊clamp(𝑥/𝑠𝑥 + 𝑧𝑥 , 0, 2𝑄𝑏 − 1)⌉, (2)

where 𝑠𝑥 = [max(𝑥) −min(𝑥)]/2𝑄𝑏 and 𝑧𝑥 = ⌊2𝑄𝑏 −max(𝑥)/𝑠𝑥 ⌉.
Here, ⌊·⌉ represents the rounding-to-nearest function, and 𝑥 refers

to the quantized attributes. Besides, function clamp(·) specifies a
range of values. Values below the minimum are set to the minimum.
Values above the maximum are set to the maximum. Without speci-
fication, we use the notation Q to denote the bit-width settings and
𝑄 to denote the number of possible bit-widths.
Entropy Coding. For quantized geometry, most existing methods
utilize G-PCC [42] for entropy coding. For quantized attributes,
some approaches [16, 41, 59] directly compress them using LZ77
codecs. Other methods [11, 35] model the probability distributions
of quantized attributes as Gaussian Mixture Model (GMM) to pro-
vide additional information for entropy coding and thereby achieve
higher compression rates. Specifically, they estimate the mean and
variance for each quantization group to construct the GMM.

2.3 Motivation
Size-sensitive Hyperparameters. Among the above four steps,
three of them require configuring the hyperparameters. These hy-
perparameters includes the reserve ratio 𝜏 , bit-width setting Q,
the number of quantization groups 𝐵, and the mean and variance
used for constructing the probability distribution of entropy coding.
Among these hyperparameters, as depicted in Fig. 1, the reserve
ratio 𝜏 and the bit-width setting Q show great impact on the final
file size. The number of quantization groups 𝐵 and the bit-width
setting Q are actually inversely related, so only one needs to be
retained for the search. Entropy encoding is used as the final step
of the entire pipeline, and its corresponding hyperparameters have
minimal impact on the final size [11, 65]. Therefore, we do not
consider the hyperparameters of entropy encoding or the number
of blocks during the hyperparameters optimization.

For online compression, hyperparameters are configured via a
learned mask and context model: 𝜏 from a learned mask, Q and
distribution parameters from a context model. The online method
balances rate and quality via 𝜆, but adjusting hyperparameters
requires retraining the context model. Hence, searching by size is
time-consuming. For offline compression, all these hyper-parameters
need to be manually configured. Inspired by linear programming
solvers [3, 46], we frame hyperparameter search as a planning
problem and introduce techniques to speed up verification, enabling
rapid iterative search.

3 Methodology
Overview.We present the compression pipeline and formulate size-
aware 3DGS compression as a MINLP to find optimal reserve ratio
𝜏 and bit-width Q. We split it into two parts: (1) discrete 𝜏 sampling,
and (2) solving Q via ILP with fixed 𝜏 . We derive an analytical Q-
to-size mapping, model it as a 0-1 ILP for accuracy, and refine size
estimates iteratively. To speed up ILP, we use quantization loss to
estimate quality drop and accelerate group-wise quantization via
CUDA. Finally, we describe the finetuning process.

3.1 Problem Formulation and Decoupling
Compression pipeline. As shown in Fig. 2, given a pre-traind
3DGS, we prune the Guassian points based on the importance
score and percentage 𝜏 , which means that 𝜏𝑁 of the most impor-
tant points are reserved. To calculate the importance of anchor
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Figure 2: Compression pipeline and acceleration techniques. We achieve size-aware 3DGS compression via hyperparameter
search. As illustrated above, the compression process can be controlled by adjusting the reserve ratio 𝜏 and bit-width setting Q.
Algo. 1 presents our hyperparameter optimization algorithm, which aims to meet the size target while maximizing quality. To
accelerate the bit-width setting solver, we use 0-1 ILP to compute the bit-width for each channel, and then construct a 0-1 ILP
per channel to solve for the bit-width of each group. Additionally, we implement parallel group-wise quantization to further
speed up the process. Finally, we restore quality via piecewise fine-tuning after pruning, voxelization, and quantization.

points in ScaffoldGS, we average the importance of the correspond-
ing generated Gaussian splats. Given the anchor point 𝑎, the set
of training viewpointsV𝑎 from which 𝑎 is visible, and the corre-
sponding generated Gaussian points G𝑎 , the importance score 𝐼𝑎
is: 𝐼𝑎 =

∑
𝑣∈V𝑎

∑
𝑔∈G𝑎 𝑚𝑔𝐼𝑑 , where 𝑚𝑔 ∈ {1, 0} reflects whether

Gaussian𝑔 is retained or discarded under viewpoint 𝑣 . 𝐼𝑑 aggregates
contributions across pixels overlapped by 𝑔, as shown in Eq. 1. For
3DGS and 4DGS, we use the Eq. 1.

We then quantize geometry and attributes. Following previous
works [10, 11, 35], coordinates are set to 16-bit and compressed
using G-PCC [42].Attribute tensorA ∈ R𝐶×(𝜏𝑁 ) is quantized group-
wise by splitting the first dimension into 𝐶 parts and the second
into 𝐵 nearly equal parts, forming 𝐶 × 𝐵 quantization groups.
We adopt the bit-width to quantize the attribute. Compared to the
quantization step, a continuous variable, the bit-width is discrete,
resulting in a smaller search space that is easier for optimization.
Quantized attributes are then compressed with LZ77 or torchac [37].
The final file includes geometry, attributes, and metadata (voxel
size, block count, and per-group scale/zero points).
Problem Formulation. Given the above pipeline, our goal is to
search for suitable values of the 𝜏 and Q under a given size con-
straint, while maximizing visual quality. Hence, we formulate this
problem as a mixed integer nonlinear programming (MINLP) model:

minimize
𝜏,Q

M(𝜏,Q),

subject to S(𝜏,Q) ≤ Size Budget,
𝜏 ∈ [0, 1],

Q ∈ [1, 32]𝐶×𝐵 ∩ Z𝐶×𝐵 .

(3)

Here,M(·) and S(·) are the quality loss and the estimated size of
compressed model under the configuration of {𝜏,Q}, respectively.

“Mixed” in MINLP means that the variable types include both dis-
crete (Q) and continuous (𝜏) variables . A detailed introduction of
MINLP are proposed in the supplementary material.
Structure Decoupling. Since bothM(·) and S(·) are nonlinear
functions of {𝜏,Q}, and the search space is extremely large, solving
this problem directly is highly challenging. For example, even when
𝐶 = 8 and 𝐵 = 8, the discrete combinatorial space already contains
3264 possibilities—far beyond astronomical scale! Moreover, opti-
mizing the continuous variable 𝜏 within this vast space further
increases the difficulty. Besides, existing MINLP solvers [1, 2] often
require hours to find a reasonable solution.

However, we observe only 𝜏 is continuous among these variables,
while others are integers. Besides, by fixing 𝜏 , we find a linear
relationship between S(·) and Q. E.g., as shown in Fig. 1b, using
8-bit across all groups yields proportional size, and 16-bit files are
roughly twice as large as 8-bit ones—allowing size estimation from
lower-bit results. Hence, if we fix the value of 𝜏 and approximate
M and S as functions that are linearizable with respect to Q, then
this problem can be decoupled into two problems: 1) using discrete
sampling to search and fix the value of 𝜏 , and then 2) solve the
Q via integer linear programming (ILP). The advantage of such a
decoupling lies in the efficiency of recent ILP solvers [3, 46], which
requires a few seconds to obtain a solution.

3.2 Solve the MINLP
Discrete Sampling of 𝜏 . Based on the above observations, we pro-
pose to traverse the value of reserve ratio 𝜏 . Then, we can search the
bit-width settings Q by solving the ILP. Hence, the hyperparameter
searching algorithm for size-aware 3D Gaussian compression are
proposed in Algo. 1. The input is a target size and a pretrained 3DGS,
and the output is the optimal hyperparameters set Φ∗ = {𝜏∗,Q∗}
that can satisfy the size constraint while maximizing visual quality.
We iterate over all possible values of 𝜏 . Here, 2 × 𝑆𝑎 < 𝑆𝑇 refers
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Algorithm 1: Hyperparameter Optimization
Input: Size budget 𝑆𝑇 and a pre-trained 3DGS model
Output: Hyperparameter set Φ∗ = {𝜏∗,Q∗ }

1 Initialize bit-width setting Q← {8}𝐶×𝐵 ;
2 Initialize the best quality𝑀∗ ← 0;
3 for 𝜏 ∈ {𝜏1, 𝜏2, 𝜏3, ...} do
4 Compress model with current hyperparameters, obtain size 𝑆𝑎 ;
5 if 2 × 𝑆𝑎 < 𝑆𝑇 then
6 continue;

7 while true do
8 𝑆Δ ← 𝑆𝑎 − 𝑆𝑇 ;

/* 01-ILP (·) solver takes Q and 𝑆Δ as input. */

9 Search bit-widths via 01-ILP: Q← 01-ILP(Q, 𝑆Δ);
10 Compress model with 𝜏 and updated Q, obtain new size 𝑆𝑎 ;
11 if |𝑆𝑎−𝑆𝑇 ||𝑆𝑇 |

< 0.05 then
12 break;

/* Retain the one with the best quality. */

13 if Ω (Q) > 𝑀∗ then
14 𝑀∗ ← Ω (Q) ;
15 Φ∗ ← {𝜏,Q};

16 return Φ∗;

to the situation where, if doubling the bit-width setting under the
current configuration (up to a maximum value of 16) cannot achieve
the target size, it indicates that 𝜏 is too small, and thus, more Gauss-
ian points need to be retained. For the bit-width setting search, we
formulate the problem as a 0-1 Integer Linear Programming (ILP)
task. The ILP solver takes Q and 𝑆Δ as inputs, where Q serves as the
initialization for each search iteration, enabling faster convergence,
and 𝑆Δ is used to calibrate the estimated size for more accurate
results. After each iteration, the newly determined bit-width setting
is used to store the results. If the stored result size 𝑆𝑎 is sufficiently
close to the target size 𝑆𝑇 , the search is terminated. For each pair
of {𝜏,Q}, we compute the estimated quality Ω and retain the pair
that yields the highest quality. We will introduce Ω below.
Binary ILP for Q. The input of mixed precision quantization is
the important attributes A, which can be seen as a 2D-matrix. We
divide this 2D-matrix into𝐶×𝐵 blocks and there are𝑄 quantization
options for each attribute block (e.g., 16 options for 1–16 bits). The
search space of the ILP problem is (𝐶×𝐵)𝑄 . The objective of solving
the ILP is to find the best bit configuration in this search space that
optimally balances quality loss Ω and the a size limit S. Besides, we
define the bit-width variables as Q ∈ {0, 1}𝐶×𝐵×𝑄 , which means
that we use a one-hot vector 𝑣 ∈ {0, 1}𝑄 , |𝑣 | = 1 to represent the
bit-width setting for an attribute block. In all, the 0-1 ILP model
tries to find the right bit-width setting Q can be formulated as

minimize
Q

Ω(Q),

subject to S(Q) ≤ Size Budget,

∀(𝑖, 𝑗) ∈ [0,𝐶) × [0, 𝐵),
𝑄∑︁
𝑞=1

Q𝑖, 𝑗,𝑞 = 1.

(4)

Here, S(Q) and Ω(Q) denote the estimated file size and estimated

quality loss under a bit-width setting Q, respectively. Next, we
introduce the details of the Ω and S.
Acceleration.We propose the following techniques to accelerate
the problem solving. Since computing the quality metric like PSNR
requires traversing the entire training set and evaluating the metric,
it takes at least 10 seconds, which significantly slows down the
search process. To solve this, we use quantization loss Ω(·) to
replace the metric functionM(·). Here, we assume that the bit-
width of each group are independent of one another. This allows
us to precompute the quantization loss of each group of attributes
separately, and it only requires 𝑄 times quantizations. As for the
metric of quality loss, we use the distance between the original
attributes and the restored attributes1. Formally, we can precompute
the estimated quality loss matrix Ω ∈ R𝐶×𝐵×𝑄 with:

Ω(𝑖, 𝑗, 𝑏) = |Â𝑏
𝑖,𝑗 − A𝑖, 𝑗 |. (5)

The | · | can be 1-norm, 2-norm, or∞-norm. We plot the relationship
between PNSR and Ω in the supplementary material, which reveals
thatminimizingΩ is equal tomaximizing PSNR. Besides, we set𝑄 as
16 to prune the search space. Finally, we implement a CUDA kernel
to accelerate the quantization process, in which each quantization
group is quantized in parallel, as shown in Fig. 2.
Size Estimator. A compresssed 3DGS file constains the following
components: 1) voxelized coordinates, 2) quantized attributes, and
3) metadata, which is used to restore the coordinates and attributes.
Fortunately, we can store the voxelized coordinates and metadata
to obtain the accurate compressed size in a few seconds. Then the
challenge of size estimator lies in estimating the size of quantized
attributes. This is to say, we only have to establish a analytical
relationship between the compressed file size and the bit-width
settings, the actual size of other components can be obtained by
saving them to storage. Besides, the size estimator must be a linear
function of the bit-width variables.

According to information theory [12], the lower bound of bit
consumption can be calculated by 𝜏𝑁 × (−∑𝑖 𝑝𝑖 log2 𝑝𝑖 ). However,
such a size estimator is not suitable for the formulation of ILP. The
reason is that, for each searching iteration, we have to quantize the
attributes into integers with the candidate bit-width setting and
calculate the probability of each values to derive the bit consump-
tion, which costs a lot of time. Moreover, the relationship between
the bit-width settings and the estimated size is non-linear, which
cannot satisfy the linear requirement of the ILP. Hence, an explicit
and linear relationship between the size S and the bit-width setting
Q must be established. Thus, we estimate the size by

S(Q) =
∑︁
𝑖, 𝑗

P𝑖 𝑗Q𝑖 𝑗 + C + 𝑆Δ . (6)
Here, P ∈ R𝐶×𝐵 refers to size of quantization groups. C refers to the
accurate storage consumption of the metadata and the coordinates,
which can be obtained by storing them to the disk directly. This
process is very fast. Of course, such a estimation for the compressed
file size is not accurate. To calibrate it, we update the 𝑆Δ multiple
times, as shown in Algo. 1.
Hierarchical Solver. As there are (𝐶 × 𝐵)𝑄 options for Q, if we
set (𝐶, 𝐵,𝑄) to (73, 60, 16), a typically setting for compressing Scaf-
foldGS, then there are 1.8 × 1058 options. In such a giant search

1Similar assumption can be found in [14, 15].
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Method Mip-NeRF 360 - 18.33 MB Tank&Temples - 11 MB Deep Blending - 8 MB
PSNR
(dB)↑

SSIM
↑

LPIPS
↓

Size
(MB) ↓

Time
(s) ↓

PSNR
(dB)↑

SSIM
↑

LPIPS
↓

Size
(MB) ↓

Time
(s) ↓

PSNR
(dB)↑

SSIM
↑

LPIPS
↓

Size
(MB) ↓

Time
(s) ↓

HAC 27.17 0.789 0.261 18.29 16627 24.45 0.854 0.179 10.92 10978 30.27 0.910 0.254 8.29 9993
Our 27.48 0.806 0.240 18.17 1328 24.04 0.840 0.200 10.93 1381 30.24 0.903 0.271 7.92 1263
Table 1: Performance on size-aware compression. “18.33 MB” refers to the average size budget of the scenes in Mip-NeRF 360.
The detailed size target of scenes are listed in supplementary material. The best results are highlighted in red cells.

Ground Truth C3DGS
47.14 MB

ScffoldGS
248MB

Lee et al.
62.99 MB

EAGLES
102 MB

SOGS (w/ SH)
51.00 MB

ReduGS
48.00 MB

MesonGS
46.70 MB

HAC
28.61 MB

Ours
28.55 MB

Figure 3: Qualitative results. We present the rendering results (rows 1) along with the corresponding error maps (rows 2) from a
randomly selected viewpoint of the bicycle scene.

space, figuring out a suitable bit-width setting is time-consuming.
Neither of GPU-based [3] or CPU-based [46] solver can solve the
this in minutes. Hence, to accelerate the solving process, we solve
this 0-1 ILP problem with two steps. As shown in the left bottom
of Fig. 2, at the first step, we search the channel-level bit-width
setting Q𝑐 ∈ [1, 16]𝐶 . Then, we calculate the size budget for each
channel of attributes based on the Q𝑐 . For example, the size budget
of channel 𝑖 can be computed by: 𝑆𝑐 = 𝑆𝑇

Q𝑐,𝑖∑
Q𝑐,𝑖

. At the second step,
we solve the group-level bit-width setting Q𝑔 ∈ [0, 16]𝐵 for each
channel based on the size limit 𝑆𝑐 .

3.3 Piecewise Finetuning
For compression with finetuning, we directly quantize the coordi-
nates and attributes without applying any transformations to them.
To obtain a better compression quality, after the point pruning
and coordinate quantization steps, we finetune for multiple epochs
respectively to restore the reconstruction quality, as depicted in the
right bottom of Fig. 2.

During fine-tuning, we fix coordinates because G-PCC decom-
pression yields unordered points, misaligned with attributes. To
align them, we sort both by Morton order after second-stage fine-
tuning and build quantization groups on attributes. Changing the
coordinates afterward may change the Morton order, which re-
orders both coordinates and attributes. This reordering breaks the
original grouping of attributes used for quantization, making the
previously searched bit-widths no longer valid.

4 Experiments
Datasets.We conduct experiments on four datasets: 1) Mip-NeRF
360 [6]. This dataset contains five outdoor and four indoor scenes.
Each scene contains 100 to 300 images. We use the images at
1600×1063. 2) Tank & Temples [25]. This dataset contains the train
and truck scenes. 3) Deep Blending [23]. This dataset contains the
drjohnson and playroom scenes. 4) Synthetic-NeRF [38]. This is a
view synthesis dataset consisting of 8 synthetic scans, with 100
views used for training and 200 views for testing.

Method PSNR SSIM LPIPS Size Finetune Time (s)
MesonGS 25.95 0.7706 0.2679 35.41 MB 0
Our+MesonGS 26.06 0.7743 0.2642 35.36 MB 0
4DGS 32.06 - - 5.10 GB 0
Our+4DGS 32.07 - - 198.64 MB 28

Table 2: Quantitative results on 3DGS variants.

Baselines.We compare our method with the following baselines:
3DGS [24], ScaffoldGS [36], C3DGS [41], Lee et al. [27], LightGaus-
sian [16], EAGLES [19], SOGS [39], Compact3D [40], ReduGS [43],
MesonGS [59], HAC [10], DVGO [49], VQRF [29], and ACRF [17].
Some of results are derived from HAC [10], 3DGS.zip [5], and
MesonGS [59], while the visual results are produced by ourselves.

4.1 Experimental Results
Size-aware Compression on Static Gaussians.We evaluate end-
to-end performance of our method via latency and quality metrics.
In Tab. 1, our method is at most 8× faster than the baseline and
achieves better or comparable quality across three datasets. For
comparisonwith the baselinemethod, we set the number of finetune
iterations as 4000. In practical applications, however, fine-tuning
for only 500 steps is expected to achieve satisfactory visual quality.
We perform a binary search on the hyperparameter 𝜆 of HAC to
find a configuration that meets the size budget. The search stops
when the difference between the obtained size and the size budget
is within 5%. The reason why HAC takes so much longer than
ours is that, after each hyperparameter adjustment, it requires 10-
20 minutes to retrain the mask and context models in order to
converge to a specific size. In contrast, our method first searches for
the appropriate hyperparameters based on the size, and then only
requires a single retraining. Since the hyperparameters are fixed,
our method has almost no impact on the file size during retraining.
Size-awareCompression onDynamicGaussians. In the bottom
part Tab. 2, we applied the SizeGS framework on 4DGS [62]. SizeGS
can achieves the target size in 51s and improved visual quality after
28s of finetuning. Experiments are conducted on the flame_steak
scene of N3DV dataset [31].
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Figure 4: Rate-distortion curves for quantitative comparison. Note that our goal is not to improve the marginal performance
and defeat the existing compression works. Instead, we aim to design a hyperparameter parameter searching algorithm to
compress the 3DGS model into the desired size while maximizing visual quality.

Base model Ω Save 01-ILP Finetune End2end
ScaffoldGS 0.11 32.78 145.22 857.71 1328.82
3DGS 0.49 15.10 58.52 - 104.51

Table 3: Decomposition of time. The unit of time is second.
From the left to right: time to calculate the estimated quality
loss Ω, time used to save to storage, time used by ILP solver,
time used to finetune the model, and the end-to-end time.

Performance on Offline Compression. We implemented our
search algorithm on top of the SOTA post-training compression –
MesonGS [59]. The results on Mip-NeRF 360 are shown in Tab. 2.
We can observe that our method enhance the compression quality
of MesonGS. For each scene, the size target is set to the compressed
file size generated by the official MesonGS configuration.
Time Breakdown. Tab. 3 shows the time breakdown of a round of
search. First, the time spent on quality estimation is very short due
to parallel quantization. Next, we search Q based on the estimated
quality, where size calibration and 0-1 ILP take similar time. After
searching for the hyperparameters, if we fine-tune for 6000 itera-
tions, the average time required is approximately 1000s. We set the
time limitation for 0-1 ILP to 50s. For ScaffoldGS, we fix the value of
𝜏 to 0.6. For 3DGS, we use the configuration fromMesonGS. We can
see that it takes 1 minute for ILP to solve the bit-width searching.
This is because 3DGS only has 10 channels that are involved in the
search, while ScaffoldGS has 73.
Qualitative Evaluation. In Fig. 3, we present the rendering results
and the corresponding error maps. From the error maps, it is evident
that our method handles chair reflections better than other methods
while achieving rendering results that are comparable to ScaffoldGS.
Compared to Online Methods. The quantitative compression
results of different methods are presented in Fig. 4. With enough
finetune iterations, our method outperforms most others across
all three datasets and achieves performance comparable to leading
methods. As implicit neural representations [67–69] serve as an
important base model for 3D compression, we also compare with
NeRF compression in supplementary material.

4.2 Ablation Study
Unless stated otherwise, all experiments use the bicycle scene from
Mip-NeRF 360 and ScaffoldGS as the base model.
0-1 ILP Superiority in Searching Bit-widths. In solving the
optimal bit-width setting for different attribute channels, we also

Method Budget (B) Searched (B) Δ size (B) Information loss
GA

3 × 107
21,833,128 8,166,872 42,821,038

Vanilla ILP 28,934,805 1,065,195 1,258,394
0-1 ILP (Our) 29,831,203 168,797 11,826
Table 4: Superiority of 0-1 ILP. “GA”: GeneticAlgorithm.With
up to 16 bit-width choices, the Vanilla ILP and GA that are
widely adopted in model quantization methods are unable
to quickly search for suitable mixed-precision settings.
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(a) Budget: 28 MB, Scene: bicycle.

0 10 20 30 40 50 60 70
Channels

0
2
4
6
8

10

B
it 

w
id

th

(b) Budget: 12 MB, Scene: bicycle.

Figure 5: Bit widths of each channel. We use different colors
to represent different kinds of attributes. From left to right
are: features f , offsets O, opacity 𝑜 , scaling l, and rotation r.

demonstrate the superiority of the 0-1 ILP. As shown in Tab. 4, we
experiment with widely-used General ILP [64] and genetic algo-
rithms [22, 51], both of which proved inferior. The 0-1 ILP fully
utilizes the size budget while minimizing information loss. General
ILP involves variables ranging from 1 to 16. In contrast, 0-1 ILP’s
binary values offer finer control, easier integration of constraints,
and more efficient solution techniques. Genetic algorithms, though
suited for black-box problems, handle constraints less efficiently,
making them unsuitable for our problem.
Bit-widths. In Fig. 5, we show the bit-widths for different attribute
channels, where different colors represent different attributes. Here,
we assume that the quantization groups that belong to the same
channel share the same bit-width setting. From left to right in order:
features f , offsets O, opacity 𝑜 , scaling l, and rotation r. We can
see that under different size budgets, the choices of bit-widths are
generally the same.
Effectiveness of Mixed Bit-width Setting. An alternative is
letting the groups that belong to the same channel share the same
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Prune Voxel Quant PNSR (dB) ↑ SSIM ↑ LPIPS ↓ Size (MB) ↓
0 0 6000 24.95 0.7331 0.2709 24.20

1000 0 5000 24.98 0.7339 0.2706 24.19
0 1000 5000 24.99 0.734 0.2707 24.12

1000 1000 4000 25.19 0.7451 0.2619 24.25
Table 5: Efficiency of piecewise finetuning. “Prune”, “Voxel”,
and “Quant” refer to the finetune iterations after the three
part. We fix the total iterations as 6000.
𝐾 Budget (MB) PSNR (dB)↑ SSIM ↑ LPIPS ↓ Searched Size (MB) ↓
40

30
25.13 0.7410 0.2684 29.85

30 25.15 0.7411 0.2685 29.91
50 25.14 0.7413 0.2686 29.86
40

20
25.07 0.7353 0.2752 19.83

30 25.07 0.7357 0.2757 19.85
50 25.12 0.7368 0.2743 19.92
Table 6: Robustness Evaluation. The bit-width setting can
adapt to different values of the number of blocks 𝐾 , ensuring
the visual quality within a given size is not affected by 𝐾 .

bit-width, like the first step of hierarchical solver in Sec. 3.2. To
verify the necessity of group-wise bit-width setting, we compare
the effectiveness of channel-wise and group-wise mixed bit-widths
setting in Fig. 6a, both with sufficient finetuning. Results show that
finer granularity yields better performance.
Effectiveness of Piecewise Finetune. In Tab. 5, we evaluate
performance of finetuned 3DGS under four iteration settings. We
set the target size as 24 MB. Piecewise fine-tuning helps improve
the upper bound of compression quality.
Estimated Quality Loss Ω. There are many ways to calculate
the distance between the original attributes and the restored at-
tributes. To investigate which metric is better, in Fig. 6b, we show
the impact of different metrics on the information loss of the final
rendering results. We present the PNSR-Size curves under three
metrics, including 1-norm, 2-norm, and∞-norm. It can be seen that
the performance of 2-norm and∞-norm are nearly the same, both
of which outperform 1-norm by a significant margin.
Robustness Evaluation. We evaluated the size and corresponding
performance of the searching algorithm under different numbers
of blocks. As shown in Tab. 6, for varying numbers of blocks and
different target sizes, our method consistently finds appropriate
bit-width settings, ensuring that the final file size is close to the
target while maintaining optimal visual quality. Regardless of the
block number setting, the final file size and performance are similar,
indicating that our method is robust to the number of blocks.

5 Related Work
5.1 3D Gaussian Splatting and Its Compression
3D Gaussian Splatting (3DGS) [24] achieves excellent 3D recon-
struction but suffers from large model size. Early efforts [16, 19,
27, 35, 39–41, 43, 53, 54, 58, 59] focused on compressing the orig-
inal 3DGS. Later, works [10, 26, 33] targeted more efficient 3DGS
variants [4, 18, 36, 45, 65], especially ScaffoldGS [36], which groups
anchors into voxels and uses per-voxel features to predict Gaus-
sians. HAC [10, 11] leverages 3D coordinates to guide quantization
and entropy coding. ContextGS [57] encodes anchors hierarchically.
HEMGS [33] uses a pretrained PointNet++[44] for better context
modeling. FCGS[9] compresses 3DGS via one-shot inference but
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Figure 6: Ablation studies. (a) Results were conducted with
sufficient finetuning, confirming that mixed bit-width set-
tings enhances the upper bound of compression quality. (b)
2- and∞-norms significantly outperform 1-norm.

supports only fixed-size output and lacks adaptability to other 3DGS
forms. Some works [8, 47, 48] address bitrate fluctuation via layered
coding, which is orthogonal to our approach.

Unlike the previous works, our work propose to configure the
hyperparameters of 3DGS from the perspective of combinatorial
optimization and design many techniques to accelerate the process.

5.2 Mixed Precision Quantization
Our work compress the 3DGS to desired size by searching for two
hyperparameters: one is 𝜏 , and the other is the bit-width setting
Q. The optimization for the bit-width setting is closely related to
mixed precision quantization for deep learning models.

Mixed Precision quantization (MPQ) is a widely-used technique
to improve the trade-off between the accuracy and efficiency of neu-
ral networks [14, 15, 52, 55, 64]. The challenge with this approach
is to find the right mixed-precision setting for the different layers
of neural networks. A brute force approach is not feasible since
the search space is exponentially large in the number of layers.
HAQ [55] employed reinforcement learning to search this space.
However, this RL-based solution requires tremendous computa-
tional resources. HAWQ [14, 15, 64] proposed to assign each layer
a sensitivity score with the Hessian spectrum and then use an ILP
solver to generate mixed-precision settings with various constraints
(such as model size and latency). Though CA-NeRF [34] uses the
MPQ scheme, their method cannot be applied to 3DGS.

Unlike the HAWQ3 [64] that uses the ILP, we use binary ILP to
search a better results for the bit-width settings of 3DGS compres-
sion. Though some works [10, 35] employed MPQ, their required
retraining for configuring the quantization settings.

6 Conclusion
In this paper, we present SizeGS, a method for automatically select-
ing hyperparameters to compress 3D Gaussians to a target file size
while maximizing visual quality. We formulate this problem as a
mixed integer non-linear programming model and decouples this
problem into two steps: discrete sampling of reserve ratio 𝜏 and ILP
for bit-width settings Q. To accelerate the ILP process, we use quan-
tization loss to replace the quality metric and write a CUDA kernel
to parallelize the quantization. We also design a size estimator to
help search out a more accurate hyperparameter set. Experiments
show SizeGS effectively controls file size while preserving quality.



SizeGS: Size-aware Compression of 3D Gaussian Splatting via Mixed Integer Programming MM ’25, October 27–31, 2025, Dublin, Ireland

Acknowledgments
We sincerely thank the anonymous reviewers from ICLR, CVPR,
and ACM MM for their valuable feedback and suggestions. We
also thank our lab mates for their help in improving the manu-
script. This work is supported in part by National Key Research
and Development Project of China (Grant No. 2023YFF0905502),
National Natural Science Foundation of China (Grant No. 92467204
and 62472249), and Shenzhen Science and Technology Program
(Grant No. JCYJ20220818101014030 and KJZD20240903102300001).

References
[1] 2018. The SCIP Optimization Suite 6.0. Retrieved April 2, 2025 from https:

//www.scipopt.org/
[2] 2025. BARON Solver. Retrieved April 2, 2025 from https://minlp.com/baron-solver
[3] Ahmed Abbas and Paul Swoboda. 2022. FastDOG: Fast Discrete Optimization

on GPU. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
CVPR 2022, New Orleans, LA, USA, June 18-24, 2022. IEEE, 439–449. doi:10.1109/
CVPR52688.2022.00053

[4] Muhammad Salman Ali, Maryam Qamar, Sung-Ho Bae, and Enzo Tartaglione.
2024. Trimming the Fat: Efficient Compression of 3D Gaussian Splats through
Pruning. In BMVC.

[5] Milena T. Bagdasarian, Paul Knoll, Florian Barthel, Anna Hilsmann, Peter Eisert,
and Wieland Morgenstern. 2024. 3DGS.zip: A survey on 3D Gaussian Splatting
Compression Methods. arXiv:2407.09510 [cs.CV] https://arxiv.org/abs/2407.
09510

[6] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter
Hedman. 2022. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
5470–5479.

[7] Anpei Chen, Haofei Xu, Stefano Esposito, Siyu Tang, and Andreas Geiger. 2025.
Lara: Efficient large-baseline radiance fields. In European Conference on Computer
Vision. Springer, 338–355.

[8] Yihang Chen, Mengyao Li, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, and
Jianfei Cai. 2025. PCGS: Progressive Compression of 3D Gaussian Splatting.
arXiv preprint arXiv:2503.08511 (2025).

[9] Yihang Chen, QianyiWu, Mengyao Li, Weiyao Lin, Mehrtash Harandi, and Jianfei
Cai. 2024. Fast Feedforward 3D Gaussian Splatting Compression. arXiv preprint
arXiv:2410.08017 (2024).

[10] Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. 2024.
HAC: Hash-grid Assisted Context for 3D Gaussian Splatting Compression. In
European Conference on Computer Vision.

[11] Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. 2025.
HAC++: Towards 100X Compression of 3D Gaussian Splatting. arXiv preprint
arXiv:2501.12255 (2025).

[12] Thomas M Cover. 1999. Elements of information theory. John Wiley & Sons.
[13] Ricardo L De Queiroz and Philip A Chou. 2016. Compression of 3D point clouds

using a region-adaptive hierarchical transform. IEEE Transactions on Image
Processing 25, 8 (2016), 3947–3956.

[14] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W. Mahoney,
and Kurt Keutzer. 2020. HAWQ-V2: Hessian Aware trace-Weighted Quantiza-
tion of Neural Networks. In Advances in neural information processing systems
(NeurIPS).

[15] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer.
2019. HAWQ: Hessian AWare Quantization of Neural Networks With Mixed-
Precision. In The IEEE International Conference on Computer Vision (ICCV).

[16] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang
Wang. 2024. LightGaussian: Unbounded 3D Gaussian Compression with 15x
Reduction and 200+ FPS. In Advances in neural information processing systems
(NeurIPS).

[17] Guangchi Fang, Qingyong Hu, Longguang Wang, and Yulan Guo. 2024. ACRF:
Compressing Explicit Neural Radiance Fields via Attribute Compression. In
International Conference on Learning Representations(ICLR).

[18] Guangchi Fang and Bing Wang. 2024. Mini-Splatting: Representing Scenes with
a Constrained Number of Gaussians. In European Conference on Computer Vision.

[19] Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. 2024. Eagles: Efficient
accelerated 3d gaussians with lightweight encodings. In European Conference on
Computer Vision.

[20] Chenghao Gu, Zhenzhe Li, Zhengqi Zhang, Yunpeng Bai, Shuzhao Xie, and Zhi
Wang. 2024. DragScene: Interactive 3D Scene Editing with Single-view Drag
Instructions. arXiv:2412.13552 [cs.CV]

[21] Yongjie Guan, Xueyu Hou, Nan Wu, Bo Han, and Tao Han. 2023. MetaStream:
Live Volumetric Content Capture, Creation, Delivery, and Rendering in Real Time.
In Proceedings of the 29th Annual International Conference on Mobile Computing
and Networking (Madrid, Spain) (ACM MobiCom ’23). Association for Computing

Machinery, New York, NY, USA, Article 29, 15 pages. doi:10.1145/3570361.3592530
[22] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei,

and Jian Sun. 2020. Single path one-shot neural architecture search with uniform
sampling. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XVI 16. Springer, 544–560.

[23] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis,
and Gabriel Brostow. 2018. Deep blending for free-viewpoint image-based ren-
dering. ACM Transactions on Graphics (ToG) 37, 6 (2018), 1–15.

[24] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis.
2023. 3d gaussian splatting for real-time radiance field rendering. ACM Transac-
tions on Graphics (ToG) 42, 4 (2023), 1–14.

[25] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Tanks and
temples: Benchmarking large-scale scene reconstruction. ACM Transactions on
Graphics (ToG) 36, 4 (2017), 1–13.

[26] Joo Chan Lee, Jong Hwan Ko, and Eunbyung Park. 2025. Optimized Minimal 3D
Gaussian Splatting. arXiv:2503.16924 [cs.CV] https://arxiv.org/abs/2503.16924

[27] Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park.
2024. Compact 3D Gaussian Representation for Radiance Field. CVPR (2024).

[28] Ke Li, Reinhard Bacher, Susanne Schmidt, Wim Leemans, and Frank Steinicke.
2024. Reality Fusion: Robust Real-time Immersive Mobile Robot Teleoperation
with Volumetric Visual Data Fusion. arXiv preprint arXiv:2408.01225 (2024).

[29] Lingzhi Li, Zhen Shen, ZhongshuWang, Li Shen, and Liefeng Bo. 2023. Compress-
ing volumetric radiance fields to 1 mb. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 4222–4231.

[30] Sicheng Li, Hao Li, Yiyi Liao, and Lu Yu. 2024. NeRFCodec: Neural Feature
Compression Meets Neural Radiance Fields for Memory-Efficient Scene Rep-
resentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 21274–21283.

[31] Tianye Li, Mira Slavcheva, Michael Zollhöfer, Simon Green, Christoph Lassner,
Changil Kim, Tanner Schmidt, Steven Lovegrove, Michael Goesele, Richard New-
combe, and Zhaoyang Lv. 2022. Neural 3D Video Synthesis From Multi-View
Video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 5521–5531.

[32] Xiaojie Li, Chenghao Gu, Shuzhao Xie, Yunpeng Bai, Weixiang Zhang, and Zhi
Wang. 2024. Tuning-Free Visual Customization via View Iterative Self-Attention
Control. arXiv:2406.06258 [cs.CV]

[33] Lei Liu, Zhenghao Chen, and Dong Xu. 2024. HEMGS: A Hybrid Entropy
Model for 3D Gaussian Splatting Data Compression. CoRR abs/2411.18473 (2024).
arXiv:2411.18473 doi:10.48550/ARXIV.2411.18473

[34] Weihang Liu, Xue Xian Zheng, Jingyi Yu, and Xin Lou. 2024. Content-Aware Ra-
diance Fields: Aligning Model Complexity with Scene Intricacy Through Learned
Bitwidth Quantization. In European Conference on Computer Vision. Springer,
239–256.

[35] Xiangrui Liu, Xinju Wu, Pingping Zhang, Shiqi Wang, Zhu Li, and Sam Kwong.
2024. CompGS: Efficient 3D Scene Representation via Compressed Gaussian
Splatting. In Proceedings of the 32nd ACM International Conference on Multimedia.

[36] Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo
Dai. 2024. Scaffold-gs: Structured 3d gaussians for view-adaptive rendering. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
20654–20664.

[37] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc
Van Gool. 2019. Practical Full Resolution Learned Lossless Image Compression.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[38] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance
fields for view synthesis. Commun. ACM 65, 1 (2021), 99–106.

[39] Wieland Morgenstern, Florian Barthel, Anna Hilsmann, and Peter Eisert. 2024.
Compact 3D Scene Representation via Self-Organizing Gaussian Grids. In Euro-
pean Conference on Computer Vision. Springer.

[40] KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and
Hamed Pirsiavash. 2024. CompGS: Smaller and Faster Gaussian Splatting with
Vector Quantization. ECCV (2024).

[41] Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. 2024. Com-
pressed 3d gaussian splatting for accelerated novel view synthesis.

[42] R. Pajarola, T. Sattler, M. Behr, L. Xie, and S. Akgul. 2019. An overview of ongoing
point cloud compression standardization activities: Video-based (V-PCC) and
geometry-based (G-PCC). IEEE Transactions on Circuits and Systems for Video
Technology 29, 9 (2019), 2672–2687. doi:10.1109/TCSVT.2019.2913190

[43] Panagiotis Papantonakis, Georgios Kopanas, Bernhard Kerbl, Alexandre Lanvin,
and George Drettakis. 2024. Reducing the Memory Footprint of 3D Gaussian
Splatting. Proceedings of the ACM on Computer Graphics and Interactive Techniques
7, 1 (May 2024). https://repo-sam.inria.fr/fungraph/reduced-3dgs/

[44] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017. PointNet++:
Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, Is-
abelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,

https://www.scipopt.org/
https://www.scipopt.org/
https://minlp.com/baron-solver
https://doi.org/10.1109/CVPR52688.2022.00053
https://doi.org/10.1109/CVPR52688.2022.00053
https://arxiv.org/abs/2407.09510
https://arxiv.org/abs/2407.09510
https://arxiv.org/abs/2407.09510
https://arxiv.org/abs/2412.13552
https://doi.org/10.1145/3570361.3592530
https://arxiv.org/abs/2503.16924
https://arxiv.org/abs/2503.16924
https://arxiv.org/abs/2406.06258
https://arxiv.org/abs/2411.18473
https://doi.org/10.48550/ARXIV.2411.18473
https://doi.org/10.1109/TCSVT.2019.2913190
https://repo-sam.inria.fr/fungraph/reduced-3dgs/


MM ’25, October 27–31, 2025, Dublin, Ireland Xie et al.

S. V. N. Vishwanathan, and RomanGarnett (Eds.). 5099–5108. https://proceedings.
neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.html

[45] Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni, and Bo Dai.
2024. Octree-gs: Towards consistent real-time rendering with lod-structured 3d
gaussians. arXiv preprint arXiv:2403.17898 (2024).

[46] J.S. Roy and S.A. Mitchell. 2020. PuLP is an LP modeler written in Python. (2020).
https://github.com/coin-or/pulp

[47] Francesco Di Sario, Riccardo Renzulli, Marco Grangetto, Akihiro Sugimoto, and
Enzo Tartaglione. 2025. GoDe: Gaussians on Demand for Progressive Level of
Detail and Scalable Compression. arXiv:2501.13558 [cs.CV] https://arxiv.org/
abs/2501.13558

[48] Yuang Shi, Simone Gasparini, GéraldineMorin, andWei Tsang Ooi. 2025. LapisGS:
Layered Progressive 3D Gaussian Splatting for Adaptive Streaming. In Interna-
tional Conference on 3D Vision, 3DV 2025, Singapore, March 25-28, 2025. IEEE.

[49] Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022. Direct voxel grid optimiza-
tion: Super-fast convergence for radiance fields reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5459–5469.

[50] Yuqi Tan, Xiang Liu, Shuzhao Xie, Bin Chen, Shu-Tao Xia, and Zhi Wang. 2024.
WATER-GS: Toward Copyright Protection for 3DGaussian Splatting via Universal
Watermarking. arXiv:2412.05695 [cs.CR]

[51] Chen Tang, Yuan Meng, Jiacheng Jiang, Shuzhao Xie, Rongwei Lu, Xinzhu Ma,
Zhi Wang, and Wenwu Zhu. 2024. Retraining-free model quantization via one-
shot weight-coupling learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 15855–15865.

[52] Chen Tang, Kai Ouyang, Zhi Wang, Yifei Zhu, Yaowei Wang, Wen Ji, and Wenwu
Zhu. 2022. Mixed-Precision Neural Network Quantization via Learned Layer-wise
Importance. In European Conference on Computer Vision.

[53] Zhenyu Tang, Chaoran Feng, Xinhua Cheng, Wangbo Yu, Junwu Zhang, Yuan
Liu, Xiaoxiao Long, Wenping Wang, and Li Yuan. 2025. NeuralGS: Bridg-
ing Neural Fields and 3D Gaussian Splatting for Compact 3D Representations.
arXiv:2503.23162 [cs.CV] https://arxiv.org/abs/2503.23162

[54] Henan Wang, Hanxin Zhu, Tianyu He, Runsen Feng, Jiajun Deng, Jiang Bian,
and Zhibo Chen. 2024. End-to-End Rate-Distortion Optimized 3D Gaussian
Representation. In European Conference on Computer Vision.

[55] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. 2019. HAQ: Hardware-
Aware Automated Quantization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition.

[56] Penghao Wang, Zhirui Zhang, Liao Wang, Kaixin Yao, Siyuan Xie, Jingyi Yu,
Minye Wu, and Lan Xu. 2024. Vˆ3: Viewing Volumetric Videos on Mobiles via
Streamable 2DDynamic Gaussians. CoRR abs/2409.13648 (2024). arXiv:2409.13648
doi:10.48550/ARXIV.2409.13648

[57] Yufei Wang, Zhihao Li, Lanqing Guo, Wenhan Yang, Alex C Kot, and Bihan Wen.
2024. ContextGS: Compact 3D Gaussian Splatting with Anchor Level Context
Model. In Advances in neural information processing systems (NeurIPS).

[58] Minye Wu and Tinne Tuytelaars. 2024. Implicit Gaussian Splatting with Efficient
Multi-Level Tri-Plane Representation. arXiv:2408.10041 [cs.CV] https://arxiv.
org/abs/2408.10041

[59] Shuzhao Xie, Weixiang Zhang, Chen Tang, Yunpeng Bai, Rongwei Lu, Shijia Ge,
and Zhi Wang. 2024. MesonGS: Post-training Compression of 3D Gaussians via
Efficient Attribute Transformation. In European Conference on Computer Vision.
Springer.

[60] Runyi Yang, Zhenxin Zhu, Zhou Jiang, Baijun Ye, Xiaoxue Chen, Yifei Zhang,
Yuantao Chen, Jian Zhao, and Hao Zhao. 2024. Spectrally Pruned Gaussian Fields
with Neural Compensation. arXiv:2405.00676 [cs.CV] https://arxiv.org/abs/2405.
00676

[61] Zeyu Yang, Hongye Yang, Zijie Pan, and Li Zhang. 2024. Real-time Photorealistic
Dynamic Scene Representation and Rendering with 4D Gaussian Splatting. In
International Conference on Learning Representations (ICLR).

[62] Zeyu Yang, Hongye Yang, Zijie Pan, Xiatian Zhu, and Li Zhang. 2024. Real-time
Photorealistic Dynamic Scene Representation and Rendering with 4D Gaussian
Splatting. In ICLR.

[63] Wei Yao, Shuzhao Xie, Letian Li, Weixiang Zhang, Zhixin Lai, Shiqi Dai, Ke Zhang,
and Zhi Wang. 2025. SD-GS: Structured Deformable 3D Gaussians for Efficient
Dynamic Scene Reconstruction. arXiv:2507.07465 [cs.GR]

[64] Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan,
LeyuanWang, Qijing Huang, Yida Wang, Michael Mahoney, et al. 2021. Hawq-v3:
Dyadic neural network quantization. In International Conference on Machine
Learning. PMLR, 11875–11886.

[65] Yu-Ting Zhan, Cheng-Yuan Ho, Hebi Yang, Yi-Hsin Chen, Jui Chiu Chiang, Yu-
Lun Liu, and Wen-Hsiao Peng. 2025. CAT-3DGS: A Context-Adaptive Triplane
Approach to Rate-Distortion-Optimized 3DGS Compression. In The Thirteenth
International Conference on Learning Representations. https://openreview.net/
forum?id=m3KuuE2ozw

[66] Jiakai Zhang, Liao Wang, Xinhang Liu, Fuqiang Zhao, Minzhang Li, Haizhao
Dai, Boyuan Zhang, Wei Yang, Lan Xu, and Jingyi Yu. 2022. NeuVV: Neural
Volumetric Videos with Immersive Rendering and Editing. CoRR abs/2202.06088
(2022). arXiv:2202.06088 https://arxiv.org/abs/2202.06088

[67] Weixiang Zhang, Shuzhao Xie, Chengwei Ren, Shijia Ge, Mingzi Wang, and Zhi
Wang. 2025. Enhancing Implicit Neural Representations via Symmetric Power
Transformation. In AAAI. AAAI Press, 10157–10165.

[68] Weixiang Zhang, Shuzhao Xie, Chengwei Ren, Siyi Xie, Chen Tang, Shijia Ge,
Mingzi Wang, and Zhi Wang. 2025. EVOS: Efficient Implicit Neural Training
via EVOlutionary Selector. In CVPR. Computer Vision Foundation / IEEE, 30472–
30482.

[69] Weixiang Zhang, Wei Yao, Shijia Ge, Shuzhao Xie, Chen Tang, and Zhi Wang.
2025. Expansive Supervision for Neural Radiance Field. arXiv:2409.08056 [cs.CV]
https://arxiv.org/abs/2409.08056

[70] Chen Ziwen, Hao Tan, Kai Zhang, Sai Bi, Fujun Luan, Yicong Hong, Li Fuxin,
and Zexiang Xu. 2024. Long-lrm: Long-sequence large reconstruction model for
wide-coverage gaussian splats. arXiv preprint arXiv:2410.12781 (2024).

https://proceedings.neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.html
https://github.com/coin-or/pulp
https://arxiv.org/abs/2501.13558
https://arxiv.org/abs/2501.13558
https://arxiv.org/abs/2501.13558
https://arxiv.org/abs/2412.05695
https://arxiv.org/abs/2503.23162
https://arxiv.org/abs/2503.23162
https://arxiv.org/abs/2409.13648
https://doi.org/10.48550/ARXIV.2409.13648
https://arxiv.org/abs/2408.10041
https://arxiv.org/abs/2408.10041
https://arxiv.org/abs/2408.10041
https://arxiv.org/abs/2405.00676
https://arxiv.org/abs/2405.00676
https://arxiv.org/abs/2405.00676
https://arxiv.org/abs/2507.07465
https://openreview.net/forum?id=m3KuuE2ozw
https://openreview.net/forum?id=m3KuuE2ozw
https://arxiv.org/abs/2202.06088
https://arxiv.org/abs/2202.06088
https://arxiv.org/abs/2409.08056
https://arxiv.org/abs/2409.08056

	Abstract
	1 Introduction
	2 Preliminary and Motivation
	2.1 Base Models for 3DGS Compression
	2.2 Universal Pipeline of 3DGS Compression
	2.3 Motivation

	3 Methodology
	3.1 Problem Formulation and Decoupling
	3.2 Solve the MINLP
	3.3 Piecewise Finetuning

	4 Experiments
	4.1 Experimental Results
	4.2 Ablation Study

	5 Related Work
	5.1 3D Gaussian Splatting and Its Compression
	5.2 Mixed Precision Quantization

	6 Conclusion
	Acknowledgments
	References

